Is it possible to create or access libraries globally with cmake? - cmake

My project is located in this filepath:
C:\Users\zaina\OneDrive\foo_directory\bar_projectname
The libraries and git repositories, which I want to use globally, are located in this file path:
C:\dev\github\foobar
For example This repository is about controlling Tello drone with c++ language, and I cloned this
I used Cmake GUI to configure the build and Visual Studio to build the libraries, but I simply can't include it in my project by invoking:
#include <tello/tello.hpp>
So there must be something that might help.
I tried git submodules and it worked fine, but it only works for a single project and not globally.
So I was wondering that is there a possibility to set a cloned repository as a global library or create one. If it is, then how?
I tried this as my CMakeLists.txt:
project(foo)
# Setup testing
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} ${CMAKE_CURRENT_SOURCE_DIR}/cmake)
enable_testing()
add_executable(foo main.cpp)
target_include_directories(foo PRIVATE ${tello_SOURCE_DIR}/src)
target_link_libraries(tello_test PRIVATE tello)
But that did not work, because my program can't find the tello header files.

Related

Minimal protobuf c++ installation for CMake use

I'm trying to use the CMake functions protobuf_generate in one of my projects. However, I'd like to the build as lightweight as possible. If at all possible I'd like to do this without having to compile protobuf's source code, or install some package on my (windows) machine.
Is there a way to just download binaries and headers and tell CMake: "Here is everything you need", so I can swap new proto versions whenever I feel like?
# CMakeList.txt : Top-level CMake project file, do global configuration
# and include sub-projects here.
#
cmake_minimum_required (VERSION 3.5)
project ("CMakeProject1")
set(TARGET_NAME CMakeProject1)
SET(PROTOBUF_INCLUDE_DIR "/path/to/include")
SET(PROTOBUF_LIBRARY "/path/to/libprotobuf.lib")
SET(PROTOBUF_PROTOC_EXECUTABLE "/path/to/protoc.exe")
find_package(Protobuf)
protobuf_generate_cpp(PROTO_SRCS PROTO_HDRS path/to/some_object.proto)
add_library(${TARGET_NAME} STATIC ${PROTO_SRCS} ${PROTO_HDRS})

Providing include directory outside source folder for static library users

I am developing a simple static C library for learning purposes using cmake.
Some projects like GLFW provide an include folder on the root, so library users can copy it and use it as an include directory.
In my library, I want to have an include folder on the root, so when I use the library on other projects, I can just copy this folder and set it as an include directory.
Here is a simplified folder structure of my library:
include
+--mylib.h
src
+--myheader.h
+--mysource.c
+--CMakeLists.txt
CmakeLists.txt
The src folder has my headers and implementation files, and a CMakeLists.txt for building a static library out of mysource.c.
The CMakeLists on the root folder just sets the project and adds src as a subdirectory.
I want the mylib.h file to have a #include <myheader.h>.
Here's a detour to talk about how I want to use it when it's done.
The idea is that when using the lib on another project, I can have something like this:
deps
+--include
+--mylib.h
src
+--main.c
And in the main.c file, include mylib.h and use what's defined on myheader.h
Here the detour ends, and I'm talking about my actual lib project again.
How can I achieve this using cmake? As far as I know, the mylib.h file needs to know it's including files from the src diretory, but I see no way of setting that, as for exemple in GLFW this directory does not have a CMakeLists.txt.
I am gonna quess that this is a design issue since it would make sense to you if you would have installed the library to a system before you tried to use it. That is, not using add_subdirectory() but find_library() at usage.
First, if you are using a external library, but not installing it, you would include all files in you deps-folder. All files then include source-files and so on and will be compiled besides you main.c. This is done with add_subdirectory(deps/MyLib) and later also included in you main-project.
Example:
add_subdirectory(deps/MyLib EXCLUDE_FROM_ALL)
target_link_libraries(${PROJECT_NAME} PRIVATE MyLib)
target_include_directories(${PROJECT_NAME} PRIVATE MyLib)
If you do not want to compile it all the time, then you must instruct cmake where it can find headers and library-files. Preferred way is to use find_library() which does some magic for you. Since you do not mention any installation i will assume that it does not exist and your only option is then to use add_subdirectory().
"I can just copy this folder and set it as an include directory."
CMake wants to handle these things for you so you should never copy headers around. You should either use add_subdirectory() to include a project/headers or make use of the find_library() which make sure you find where the headers are in the system.
I suggest that you push yourself to learn howto install a library into a system and how to utilize it later, but only by using find_library(). Then the library will be global for all projects and also not duplicated.
Adding some kind of psudo-code in hope it all makes more sense. Although it is around add_subdirectory() since the code for installing is quite large unfortunately.
CMakeLists.txt for main.c
cmake_minimum_required(VERSION 3.8)
project(MyLibTest)
add_executable(${PROJECT_NAME}
src/main.c
)
add_subdirectory(external/MyLib EXCLUDE_FROM_ALL)
target_link_libraries(${PROJECT_NAME} PRIVATE MyLib)
target_include_directories(${PROJECT_NAME} PRIVATE MyLib)
CMakeLists.txt for library
cmake_minimum_required(VERSION 3.8)
project(MyLib)
add_library(${PROJECT_NAME} STATIC
src/MyLib.c
)
target_include_directories(${PROJECT_NAME}
PUBLIC
$<INSTALL_INTERFACE:include>
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
)
The structure for the project would then be:
/
external/MyLib
external/MyLib/src
MyLib.c
external/MyLib/include
MyLib.h
src
main.c
CMakeLists.txt

CMake package dependencies handling

I am facing the current problem while using CMake:
I have libA, which I build using CMake and install it (in a custom directory, ~/install, using CMAKE_PREFIX_PATH) together with its exported targets and config (generated by CMake). The installed files look more or less like this:
~/install/lib/libA.so
~/install/lib/cmake/AConfig.cmake
~/install/lib/cmake/ATargets.cmake
I have libB, which links (privately) against libA:
find_package(A CONFIG REQUIRED)
add_library(B b.c)
target_link_libraries(B PRIVATE A)
I also install it together with its exported targets and config (generated by CMake).
Finally, I have an application which uses libB:
find_package(B CONFIG REQUIRED)
add_executable(app app.c)
target_link_libraries(app B)
The problem is that when the linker is executed, it will link against libB using the full path (~/install/lib/libB.so), but libA is only linked with -lA. As the libraries are not installed in any "standard" folder, it is not found (unless I manually add the folder using link_directories).
Am I doing anything wrong? What is the best solution to handle this case?
Thanks,

Making a CMake library accessible by other CMake packages automatically

I have one project that produces a library:
project (myCoolLibrary)
ADD_LIBRARY(my_cool_library SHARED ${mysources_SRC})
And another project that should be using this library:
find_package (myCoolLibrary REQUIRED)
INCLUDE_DIRECTORIES("${myCoolLibrary_INCLUDE_DIRS}" )
add_executable(myCoolExe ${my_sources_SRC} )
TARGET_LINK_LIBRARIES(myCoolExe ${myCoolLibrary_LIBRARIES} )
Is there a way that I can change the first file so that the second file works automatically? That by running CMake on the first file and then running make on the output, then running CMake on the second file, CMake is able to find the package?
An answer where I just give the address of where the first project is built to the second package is also acceptable.
Taking the code found in a blog post by #daniperez - Use CMake-enabled libraries in your CMake project (III) - I've come up with the following minimal solution:
myCoolLibrary/CMakeLists.txt
cmake_minimum_required(VERSION 3.3)
project(myCoolLibrary)
function(my_export_target _target _include_dir)
file(
WRITE "${CMAKE_CURRENT_BINARY_DIR}/${_target}Config.cmake"
"
include(\"\$\{CMAKE_CURRENT_LIST_DIR\}/${_target}Targets.cmake\")
set_property(
TARGET ${_target}
APPEND PROPERTY
INTERFACE_INCLUDE_DIRECTORIES \"${_include_dir}\"
)
"
)
export(TARGETS ${_target} FILE "${CMAKE_CURRENT_BINARY_DIR}/${_target}Targets.cmake")
# NOTE: The following call can pollute your PC's CMake package registry
# See comments/alternatives below
export(PACKAGE ${_target})
endfunction(my_export_target)
...
add_library(${PROJECT_NAME} SHARED ${mysources_SRC})
my_export_target(${PROJECT_NAME} "${CMAKE_CURRENT_SOURCE_DIR}")
myCoolExe/CMakeLists.txt
cmake_minimum_required(VERSION 3.3)
project(myCoolExe)
find_package(myCoolLibrary REQUIRED)
...
add_executable(${PROJECT_NAME} ${my_sources_SRC})
target_link_libraries(${PROJECT_NAME} myCoolLibrary)
To make it reusable I have packed everything into my_export_target(). And I'm friend of self-propagating properties like INTERFACE_INCLUDE_DIRECTORIES.
As commented by #ruslo, using export(PACKAGE ...) can pollute your package registry. So alternatively you can:
Write the target configuration files directly to some dedicated place specific for a certain toolchain
See e.g. How to install your custom CMake-Find module and 0003659: FIND_PACKAGE command improvements.
Set CMAKE_MODULE_PATH via the second project's CMake command line (injecting the search path(s) from the outside). If you are building the two projects anyway with a build script, then this is the most direct way to propagate the module search path(s).
Additional References
export()
CMake/Tutorials/Package Registry
Unable to find Eigen3 with CMake
How to instruct CMake to use the build architecture compiler

Clion, cMake and POCO

I'm a new guy to c++ and cmake here. I decided to test out cLion and cMake. I'm trying to write a simple email client for the command line. Other sources told me that the best way to implement a POP3 and SMTP functions would be to use POCO. Unfortunately, cMake is giving me trouble. The version that came with CLion is 3.2 but the version that my machine is running is 2.8.
~$ cmake --version
cmake version 2.8.12.2
First problem. I thought that I could bypass this by just installing POCO and doing the same thing that I used for openssl which I also had to download.
cMakeList.txt:
cmake_minimum_required(VERSION 3.0)
project(Email_Reader)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
#included paths for openssl and POCO.
INCLUDE_DIRECTORIES("/usr/include/openssl")
INCLUDE_DIRECTORIES("/usr/local/include/Poco/Net")
set(SOURCE_FILES main.cpp)
add_executable(Email_Reader ${SOURCE_FILES})
The documentation for POCO tells me that I need at least 3.0 to work but I feel I have 2 different cMakes on my machine. Can you help me, please?
You can get the latest CMake release from: http://www.cmake.org/download/
For Linux, it's this archive: http://www.cmake.org/files/v3.2/cmake-3.2.2.tar.gz
An easy way to use it is to put the extracted files in /opt/cmake/cmake-3.2 then create the following aliases (e.g. in ~/.bash_aliases:
alias ccmake3='/opt/cmake/cmake-3.2/bin/ccmake'
alias cmake3='/opt/cmake/cmake-3.2/bin/cmake'
alias cmake3-gui='/opt/cmake/cmake-3.2/bin/cmake-gui'
alias cpack3='/opt/cmake/cmake-3.2/bin/cpack'
alias ctest3='/opt/cmake/cmake-3.2/bin/ctest'
Then, make sure that you have properly built and installed POCO.
The Getting Started page has all the information you need for doing that. But, basically, you should get the sources from here and extract them somehwere:
wget http://pocoproject.org/releases/poco-1.6.0/poco-1.6.0.tar.gz
tar xvfz poco-1.6.0.tar.gz
cd poco-1.6.0
mkdir -p cmake_build cmake_install/debug cmake_install/release
cd cmake_build
cmake3-gui ..
In the CMake 3 GUI, press Configure. In the new window, keep the default option Unix Makefiles and click on Finish. An error message should appear (which is fine), click Ok.
To build the Debug version, set the following:
CMAKE_BUILD_TYPE : Debug
CMAKE_INSTALL_PREFIX : the absolute path to "cmake_install/debug"
To get you started quickly with POCO, unckeck all the options, except for the following, they have to be enabled:
ENABLE_JSON
ENABLE_NET
ENABLE_UTIL
ENABLE_XML
POCO_STATIC
(You can consider the other options later if you need to...)
Quit the GUI, then build/install POCO:
make clean
make -j8
make install
Now, POCO should be installed in cmake_install/debug. To build/install the other versions, just do the same procedure, but replace Debug in CMAKE_BUILD_TYPE with Release, RelWithDebInfo or MinSizeRel (cf. CMake's doc) (also, you'll have to change the install directories)
Finally, you can use POCO in you C++ projects.
For instance, your CMakeLists.txt should look like this:
cmake_minimum_required(VERSION 3.0)
project(Email_Reader)
# define the project
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
set(SOURCE_FILES main.cpp)
add_executable(Email_Reader ${SOURCE_FILES})
# set the POCO paths and libs
set(POCO_PREFIX "/path/to/cmake_install/debug") # the directory containing "include" and "lib"
set(POCO_INCLUDE_DIR "${POCO_PREFIX}/include")
set(POCO_LIB_DIR "${POCO_PREFIX}/lib")
set(POCO_LIBS "${POCO_LIB_DIR}/libPocoNetd.a"
"${POCO_LIB_DIR}/libPocoUtild.a"
"${POCO_LIB_DIR}/libPocoJSONd.a"
"${POCO_LIB_DIR}/libPocoXMLd.a"
"${POCO_LIB_DIR}/libPocoFoundationd.a"
"pthread")
# set the include path for the app
target_include_directories(Email_Reader PRIVATE "${POCO_INCLUDE_DIR}")
# link the app against POCO
target_link_libraries(Email_Reader "${POCO_LIBS}")
My CMakeLists.txt for using Poco looks like this:
cmake_minimum_required(VERSION 3.10.0)
project(MyProject VERSION 0.1.0)
find_package(Poco REQUIRED COMPONENTS Foundation Net Zip )
add_executable(my_exe main.cpp)
target_link_libraries(my_exe PUBLIC Poco::Foundation Poco::Zip Poco::Net)
This configuration automatically add the needed include directories and libraries.
The Foundation component is mandatory, it seems it provides the include directories.
Don't add Poco to target_link_libraries, the linker will then look for a 'Poco' library.