Vulkan: Is the first acquired image at index 0? - vulkan

When you acquire an image from the swapchain for the first time in a Vulkan application, is the index of that image 0? or is it undefined?

vkAcquireNextImageKHR tells you which image you get to use. The first call is not a special case.

Related

In Vulkan, using FIFO, happens when you don't have an image ready to present when the vertical blank arrives?

I'm new to graphics, and I've been looking at Vulkan presentation modes. I was wondering: in a situation where we've only got 2 images in our swapchain (one that the screen's currently reading from and one that's free), what happens if we don't manage to finish drawing to the currently free image before the next vertical blank? Do we do the presentation and get weird tearing, or do skip the presentation and draw the same image again (I guess giving a "stuttering" effect)? Do we need to define what happens, or is it automatic?
As a side note, is this why people use longer swap chains? i.e. so that if you managed to draw out 2 images to your swap chain while the screen was displaying the last image but now you're running late, at least you can present the newer of the 2 images from before?
I'm not sure how much of this is specific to FIFO or mailbox mode: I guess with mailbox you'll already have used the newest image you've got, so you're stuck again?
[2-image swapchain][1]
[1]: https://i.stack.imgur.com/rxe51.png
Tearing never happens in regular FIFO (or mailbox) mode. When you present an image, this image will be used for all subsequent vblanks until a new image is presented. And since FIFO disallows tearing, in your case, the image will be fully displayed twice.
If you are using a 2-deep swapchain with FIFO, you have to produce each image on time in order to avoid stuttering. With longer swapchains and FIFO, you have more leeway to avoid visible stuttering. With longer swapchains and mailbox, you can get a similar effect, but there will be less visible latency when your application is running on-time.

3 vs 2 VkSwapchain images?

So a Vulkan swapchain basically has a pool of images, user-defined in number, that it allocates when it is created, and images from the pool cycle like this:
1. An unused image is acquired by the program from the swapchain
2. The image is rendered by the program
3. The image is delivered for presentation to the surface.
4. The image is returned to the pool.
Given that, of what advantage is having 3 images in the swapchain rather than 2?
(I'm asking because I received a BestPractice validation complaint that I was using 2 rather than 3.)
With 2 images, isn't it the case that one will be being presented (3.) while the other is rendered (2.), and then they alternate those roles back and forth?
With 3 images, isn't it the case that one of the three will be idle? Particularly if the loop is locked to the refresh rate anyway?
I'm probably missing something.
So what happens if one image is being presented, one has finished being rendered to by the GPU, and you have some work to render for later presentation? Well, if you're rendering to a swapchain image, that GPU work cannot start until image 0 has finished being presented.
Double buffering will therefore lead to stalling the GPU if the time to present a frame is greater than the time to render a frame. Yes, triple buffering will do the same if the render time consistently is shorter than the present time, but your frame time is right on the edge of the present time, then double buffering has a greater chance of wasting GPU time.
Of course, the downside is latency; triple buffering means that the image you display will be seen one frame later than double buffering.

Rendering multiple objects with different textures, vertex buffers, and uniform values in Vulkan

My background is in OpenGL and I'm attempting to learn Vulkan. I'm having a little trouble with setting up a class so I can render multiple objects with different textures, vertex buffers, and UBO values. I've run into an issue where two of my images are drawn, but they flicker and alternate. I'm thinking it must be due to presenting the image after the draw call. Is there a way to delay presentation of an image? Or merge different images together before presenting? My code can be found here, I'm hoping it is enough for someone to get an idea of what I'm trying to do: https://gitlab.com/cwink/Ingin/blob/master/ingin.cpp
Thanks!
You call render twice per frame. And render calls vkQueuePresentKHR, so obviously the two renderings of yours alternate.
You can delay presentation simply by delaying vkQueuePresentKHR call. Let's say you want to show each image for ~1 s. You can simply std::this_thread::sleep_for (std::chrono::seconds(1)); after each render call. (Possibly not the bestest way to do it, but just to get the idea where your problem lies.)
vkQueuePresentKHR does not do any kind of "merging" for you. Typically you "merge images" by simply drawing them into the same swapchain VkImage in the first place, and then present it once.

Metal -- skipping commandBuffer.present(drawable) to not display a frame?

In my Metal app for macOS, I have a situation where I only want to display the render results every so often. I want to complete the rendering pass every frame, and save the drawable texture image to a file, but I only want to display the render every sixteenth frame or so. I tried just skipping commandBuffer.present(drawable) when I don't want to display, but it is not working. It just stops displaying new frames once I do that. After skipping one call to commandBuffer.present(), it just doesn't display any new frames. It does continue to run, however.
Why would that happen? Once I commit a command buffer, is it required for it to be presented?
If I can't get this to work, then I will try to render into an offscreen buffer for these frames I don't want displayed. But it would be extra work and require more memory for the offscreen render buffer, so I'd rather just be able to use my regular onscreen render buffer if possible.
Thanks!
It's not required that a command buffer present a drawable. I think the issue is that, once you've obtained the drawable, it's not returned to the pool maintained by the CAMetalLayer (or, indirectly, MTKView) that provided it until it is presented.
Do not render to a drawable's texture if you don't plan on presenting. Rendering to an off-screen texture is the right approach. In fact, if you always render first to an off-screen texture and then, only for the frames you want to display, copy that to a drawable's texture, then you can leave the framebufferOnly property of the CAMetalLayer with its default true value. In that case, there's a decent chance that you won't increase the memory required (because the drawable's texture is really just part of the screen's backing store).

Vulkan update descriptor every frame

I want to render my scene to a texture and then use that texture in shader so I created a frambuffer using imageview and recorded a command buffer for that. I successfully uploaded and executed the command buffer on gpu but the descriptor of imageview is black. I'm creating a descriptor from the imageview before rendering loop. Is it black because I create it before anything is rendered to framebuffer? If so I will have to update the descriptor every frame. Will I have to create a new descriptor from imageview every frame? Or is there another way I can do this?
I have read other thread on this title. Don't mark this as duplicate cause that thread is about textures and this is texture from a imageview.
Thanks.
#IAS0601 I will answer questions from Your comment through an answer, as it allows for much longer text to be written, and its formatting is much better. I hope this also answers Your original question, but You don't have to treat like the answer. As I wrote, I'm not sure what You are asking about.
1) In practically all cases, GPU accesses images through image views. They specify additional parameters which define how image is accessed (like for example which part of the image is accessed), but still it is the original image that gets accessed. Image view, as name suggests, is just a view, list of access parameters. It doesn't have any memory bound to it, it doesn't contain any data (apart from the parameters specified during image view creation).
So when You create a framebuffer and render into it, You render into original images or, to be more specific, to those parts of original images which were specified in image views. For example, You have a 2D texture with 3 array layers. You create a 2D image view for the middle (second) layer. Then You use this image view during framebuffer creation. And now when You render into this framebuffer, in fact You are rendering into the second layer of the original 2D texture array.
Another thing - when You later access the same image, and when You use the same image view, You still access the original image. If You rendered something into the image, then You will get the updated data (provided You have done everything correctly, like perform appropriate synchronization operations, layout transition if necessary etc.). I hope this is what You mean by updating image view.
2) I'm not sure what You mean by updating descriptor set. In Vulkan when we update a descriptor set, this means that we specify handles of Vulkan resources that should be used through given descriptor set.
If I understand You correctly - You want to render something into an image. You create an image view for that image and provide that image view during framebuffer creation. Then You render something into that framebuffer. Now You want to read data from that image. You have two options. If You want to access only one sample location that is associated with fragment shader's location, You can do this through an input attachment in the next subpass of the same render pass. But this way You can only perform operations which don't require access to multiple texels, for example a color correction.
But if You want to do something more advanced, like blurring or shadow mapping, if You need access to several texels, You must end a render pass and start another one. In this second render pass, You can read data from the original image through a descriptor set. It doesn't matter when this descriptor set was created and updated (when the handle of image view was specified). If You don't change the handles of resources - meaning, if You don't create a new image or a new image view, You can use the same descriptor set and You will access the data rendered in the first render pass.
If You have problems accessing the data, for example (as You wrote) You get only black colors, this suggests You didn't perform everything correctly - render pass load or store ops are incorrect, or initial and final layouts are incorrect. Or synchronization isn't performed correctly. Unfortunately, without access to Your project, we can't be sure what is wrong.