I am new to TensorFlow and I am wanting to use tensorflow.config.legacy_seq2se, specifically embedding_rnn_seq2seq() and I can't figure out how to use it (or if there is an equivalent method) for TensorFlow 2.
I know that in TensorFlow 2, TensorFlow removed contrib and according to this document
tf.contrib.legacy_seq2seq has been deleted and replaced with tf.seq2seq in TensorFlow 2, but I can't find embedding_rnn_seq2seq() in the tf.seq2seq documentation I have seen.
The reason I want to use it is I am trying to implement something similar to what is done with embedding_rnn_seq2seq() in this article. So is there an equivalent in tensorflow 2, or is there a different way to achieve the same goal?
According to https://docs.w3cub.com/tensorflow~python/tf/contrib/legacy_seq2seq/embedding_rnn_seq2seq , contrib.legacy_rnn_seq2seq createsan embedding of an argument that you pass, encoder_inputs (the shape is num_encoder_symbols x input_size). It then runs an RNN to encode the embedded encoder_inputs to convert it into a state vector. Then it embeds another argument you pass decoder_inputs (the shape is num_decoder_symbols x input_size). Next it runs an RNN decoder initialized with with the last encoder state, on the embedded decoder_inputs.
Contrib was a community maintained part of Tensorflow, and seq2seq was part of it. In Tensorflow 2 it was removed.
You could just use a Tensorflow_addons which contains community made add ons including seq2seq I believe.
You can import Tensorflow add ons via
import tensorflow_addons
Or you could just use a Tensorflow version that still has Seq2Seq (I believe 1.1 is the latest).
There are also things like bi-directional recurrent neural networks and dynamic RNNs (they are basically a new version of seq2seq) that may work.
Related
In tensorflow 1.x this can be done using a graph and a session, which is quite tedious.
Is there an easier way to manually assign pretrained weights to a specific convolution in tensorflow 2.x?
If you are working with Keras inside Tensorflow 2.x, every layer has a method called set_weights that you can use to substitute weights or assign new ones from Numpy arrays.
Say, for example, that you are doing distillation knowledge. Then you could assign weights of the teacher to the student by:
conv.set_weights(teacher.convx.get_weights())
where conv is a particular layer of the student and convx the homologue of the teacher.
You can check the documentation for more details:
Documentation - set_weights()
I have heard that it is possible to use the pretrained Universal Sentence Encoder (USE) (neural language model) from TF-hub as part of a trainable model, e.g. a sentence classifier. Some versions of USE rely on SentencePiece sub-word tokenizer, which I also need. There are minimal instructions online for how to do this.
Here is how to use USE-lite with SentencePiece:
- https://tfhub.dev/google/universal-sentence-encoder-lite/2
Here is how to train a classifier based on a pretrained USE model:
- http://hunterheidenreich.com/blog/google-universal-sentence-encoder-in-keras/
- https://www.youtube.com/watch?v=gnz1CUzb5qo
And here is how to measure sentence similarity using both USE-lite and SentencePiece:
- https://github.com/tensorflow/hub/blob/master/examples/colab/semantic_similarity_with_tf_hub_universal_encoder_lite.ipynb
I have successfully reproduced the above pieces separately. I have then tried to combine the above ideas into a single POC that will build a classifier model based on USE-lite and SentencePiece, but I cannot see how to do it. I am currently stuck on the part where I modify the trainable classifier's first layer(s). I have tried to make it accept either (1) SentencePiece token IDs (in which I tokenize the text outide of the Tensorflow graph) or (2) raw text (using SentencePiece as an Op inside the Tensorflow graph). After that point, it should feed tokenized text forward into the USE-lite model, either in a lambda or in some other way. Finally, the output of USE-lite should be fed into a dense layer (or two?) ending in softmax for computing class probabilities.
I am relatively new to Tensorflow. I imagine that the above sources would be sufficient for a more experienced Tensorflow developer to merge and make work for my use-case. Let me know if you can provide any pointers. Thanks.
Summary
My question is composed by:
A context in which I present my project, my working environment and my workflow
The detailed problem
The concerned parts of my code
The solutions I tried to solve my problem
The question reminder
Context
I've written a Python Keras implementation of a downgraded version of the original Super-Resolution GAN. Now I want to test it using Google Firebase Machine Learning Kit, by hosting it in the Google servers. That's why I have to convert my Keras program to a TensorFlow Lite one.
Environment and workflow (with the problem)
I'm training my program on Google Colab working environment: there, I've installed TF 2.0.0-beta1 (this choice is motivated by this uncorrect answer: https://datascience.stackexchange.com/a/57408/78409).
Workflow (and problem):
I write locally my Python Keras program, keeping in mind that it will run on TF 2. So I use TF 2 imports, for example: from tensorflow.keras.optimizers import Adam and also from tensorflow.keras.layers import Conv2D, BatchNormalization
I send my code to my Drive
I run without any problem my Google Colab Notebook: TF 2 is used.
I get the output model in my Drive, and I download it.
I try to convert this model to the TFLite format by executing the following CLI: tflite_convert --output_file=srgan.tflite --keras_model_file=srgan.h5: here the problem appears.
The problem
Instead of outputing the TF Lite converted model from the TF (Keras) model, the previous CLI outputs this error:
ValueError: Unknown loss function:build_vgg19_loss_network
The function build_vgg19_loss_network is a custom loss function that I've implemented and that must be used by the GAN.
Parts of code that rise this problem
Presenting the custom loss function
The custom loss function is implemented like that:
def build_vgg19_loss_network(ground_truth_image, predicted_image):
loss_model = Vgg19Loss.define_loss_model(high_resolution_shape)
return mean(square(loss_model(ground_truth_image) - loss_model(predicted_image)))
Compiling the generator network with my custom loss function
generator_model.compile(optimizer=the_optimizer, loss=build_vgg19_loss_network)
What I've tried to do in order to solve the problem
As I read it on StackOverflow (link at the beginning of this question), TF 2 was thought to be sufficient to output a Keras model which would be correctly processed by my tflite_convert CLI. But it's not, obviously.
As I read it on GitHub, I tried to manually set my custom loss function among Keras' loss functions, by adding these lines: import tensorflow.keras.losses
tensorflow.keras.losses.build_vgg19_loss_network = build_vgg19_loss_network. It didn't work.
I read on GitHub I could use custom objects with load_model Keras function: but I only want to use compile Keras function. Not load_model.
My final question
I want to do only minor changes to my code, since it works fine. So I don't want, for example, to replace compile with load_model. With this constraint, could you help me, please, to make my CLI tflite_convert works with my custom loss function?
Since you are claiming that TFLite conversion is failing due to a custom loss function, you can save the model file without keep the optimizer details. To do that, set include_optimizer parameter to False as shown below:
model.save('model.h5', include_optimizer=False)
Now, if all the layers inside your model are convertible, they should get converted into TFLite file.
Edit:
You can then convert the h5 file like this:
import tensorflow as tf
model = tf.keras.models.load_model('model.h5') # srgan.h5 for you
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
open("converted_model.tflite", "wb").write(tflite_model)
Usual practice to overcome the unsupported operators in TFLite conversion is documented here.
I had the same error. I recommend changing the loss to "mse" since you already have a well-trained model and you don't need to train with the .tflite file.
Is it possible to define a graph in native TensorFlow and then convert this graph to a Keras model?
My intention is simply combining (for me) the best of the two worlds.
I really like the Keras model API for prototyping and new experiments, i.e. using the awesome multi_gpu_model(model, gpus=4) for training with multiple GPUs, saving/loading weights or whole models with oneliners, all the convenience functions like .fit(), .predict(), and others.
However, I prefer to define my model in native TensorFlow. Context managers in TF are awesome and, in my opinion, it is much easier to implement stuff like GANs with them:
with tf.variable_scope("Generator"):
# define some layers
with tf.variable_scope("Discriminator"):
# define some layers
# model losses
G_train_op = ...AdamOptimizer(...)
.minimize(gloss,
var_list=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope="Generator")
D_train_op = ...AdamOptimizer(...)
.minimize(dloss,
var_list=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope="Discriminator")
Another bonus is structuring the graph this way. In TensorBoard debugging complicated native Keras models are hell since they are not structured at all. With heavy use of variable scopes in native TF you can "disentangle" the graph and look at a very structured version of a complicated model for debugging.
By utilizing this I can directly setup custom loss function and do not have to freeze anything in every training iteration since TF will only update the weights in the correct scope, which is (at least in my opinion) far easier than the Keras solution to loop over all the existing layers and set .trainable = False.
TL;DR:
Long story short: I like the direct access to everything in TF, but most of the time a simple Keras model is sufficient for training, inference, ... later on. The model API is much easier and more convenient in Keras.
Hence, I would prefer to set up a graph in native TF and convert it to Keras for training, evaluation, and so on. Is there any way to do this?
I don't think it is possible to create a generic automated converter for any TF graph, that will come up with a meaningful set of layers, with proper namings etc. Just because graphs are more flexible than a sequence of Keras layers.
However, you can wrap your model with the Lambda layer. Build your model inside a function, wrap it with Lambda and you have it in Keras:
def model_fn(x):
layer_1 = tf.layers.dense(x, 100)
layer_2 = tf.layers.dense(layer_1, 100)
out_layer = tf.layers.dense(layer_2, num_classes)
return out_layer
model.add(Lambda(model_fn))
That is what sometimes happens when you use multi_gpu_model: You come up with three layers: Input, model, and Output.
Keras Apologetics
However, integration between TensorFlow and Keras can be much more tighter and meaningful. See this tutorial for use cases.
For instance, variable scopes can be used pretty much like in TensorFlow:
x = tf.placeholder(tf.float32, shape=(None, 20, 64))
with tf.name_scope('block1'):
y = LSTM(32, name='mylstm')(x)
The same for manual device placement:
with tf.device('/gpu:0'):
x = tf.placeholder(tf.float32, shape=(None, 20, 64))
y = LSTM(32)(x) # all ops / variables in the LSTM layer will live on GPU:0
Custom losses are discussed here: Keras: clean implementation for multiple outputs and custom loss functions?
This is how my model defined in Keras looks in Tensorboard:
So, Keras is indeed only a simplified frontend to TensorFlow so you can mix them quite flexibly. I would recommend you to inspect source code of Keras model zoo for clever solutions and patterns that allows you to build complex models using clean API of Keras.
You can insert TensorFlow code directly into your Keras model or training pipeline! Since mid-2017, Keras has fully adopted and integrated into TensorFlow. This article goes into more detail.
This means that your TensorFlow model is already a Keras model and vice versa. You can develop in Keras and switch to TensorFlow whenever you need to. TensorFlow code will work with Keras APIs, including Keras APIs for training, inference and saving your model.
I've made a new op and I'd like to use it with AdamOptimizer. I've created a gradient for it following the instructions here and added it to my optimizer's var_list but Tensorflow says that my variable doesn't have a processor.
Is there support for Tensorflow custom ops in optimizers?
Does the optimizer class let me create a new processor or would I have to rewrite part of compute_gradients?
Also, what does automatic differentiation mean, as stated by the TF docs:
To make automatic differentiation work for new ops, you must register a gradient function which computes gradients with respect to the ops' inputs given gradients with respect to the ops' outputs.
Thanks!
So I found out that what I was doing was not supported with Tensorflow optimizer.
I was trying to create an op that would act like a Tensorflow variable (i.e. get updated by the functions within Optimizer::minimize()), however, I believe that TF does something weird with processors and Eigen::Tensors that I don't fully understand in order to update gradients with minimize(), and naturally this doesn't work with Op classes.