How does a reference clock "drive" a VCO - embedded

Reading the following chapter:
https://users.ece.utexas.edu/~valvano/Volume1/E-Book/C10_FiniteStateMachines.htm
In the beginning, on top of Figure 10.1, the author claims that:
Because the reference clock is stable, the feedback loop in the PLL will drive the output to a stable 400 MHz frequency.
Question: How does a 16MHz clock drive a 400MHz PLL? (I checked the wiki for PLL but didn't understand much)
A bit of background: I don't know much about electronics, and apparently this book doesn't really require students to understand such questions (it focuses on writing C programs for an eval board). I'm just curious.

In simple words: A PLL works by "comparing" the reference frequency with its own frequency. If its frequency is too low, it raises it a bit, and if it's too high, it lowers it a bit. This is what the feedback loop does. (Actually, the phase is used for comparison. That's why it's called a "phase lock[ed] loop".)
So your question boils down to: How can a frequency of 400 MHz be compared with a frequency of 16 MHz?
Well, as such, it cannot. For the comparison in the "Phase/Freq Detector" both frequencies need to be nearly the same. "Nearly" because while not being locked, the VCO's frequency might be "off track".
The solution is to divide the 400 MHz down to 16 MHz, by the value of 25. This is what the block "/m" in the linked page does:
The "programming" aspect in your question: You set up the divisor by choosing the right XTAL from the table.
After division, the detector receives two frequencies in the same range.

Related

timing issues: simulation (iverilog, gtkwave) works, hardware (yosys) does not

I am learning verilog, trying do make the "hello world" in the VGA world (a bouncing ball) on a ice40LX1K board (olimex ice40HX1K + VGA I/O board).
I have a strange problem: when I simulate my design using iverilog + GTKWave, it seams to work good. But the implementation in hardware does not work.
What is strange is that in the hardware implemention, the ball is doesn't move .. and its position is all zero (0,0) althou the verilog code never should set it overthere.
It looks like changing the value of xpos_ball or ypos_ball does not actually change these values. (a hardware issue? a yosys issue)? In the iverilog simulation, location of the ball does change as expected.
I have no idea if this is a error in my own verilog code (as I am new in this, this is very well possible), an issue in yosys, or a problem in the hardware (speed issue, is the 100 Mhz clock to fast?) or something else?
Any proposals on how to troubleshoot this, or next steps for this kind of issue? Are there other debugging-tricks I can use?
(edit: link to the actual verilog-code removed as not relevant anymore)
Kristoff
is the 100 Mhz clock to fast?
Yes. That design is good for 39.67 MHz:
$ make vga_bounceball.rpt
icetime -d hx1k -mtr vga_bounceball.rpt vga_bounceball.asc
// Reading input .asc file..
// Reading 1k chipdb file..
// Creating timing netlist..
// Timing estimate: 25.21 ns (39.67 MHz)
Edit re comment:
You can always safely divide a clock by a power of two by using FFs as clock dividers:
input clk_100MHz;
reg clk_50MHz = 0; // initialization needed for simulation
reg clk_25MHz = 0;
always #(posedge clk_100MHz) clk_50MHz <= !clk_50MHz;
always #(posedge clk_50MHz) clk_25MHz <= !clk_25MHz;
(A non-power-of-two prescaler is not always safe without making sure with timing analysis that the prescaler itself can run in the high frequency domain.)

Reading incorrect temperature value from thermistor using EVK1100

I want to get the temperature from a thermistor, so I made a voltage divider (3.3V to 10k resistor and between ground a 10k thermistor) I read the ADC between the 10k resistor and the thermistor.
The BCOEFFICIENT is 3977, the NOMINAL TEMPERATURE is 25C and I use the simple B parameter equation. I'm not sure where I'm doing mistake, I read room temperature as 10.5C which was suppose to be around 24C. The following is the part of the program that I used for temperature sensor(developed in AVR studio),
#define TEMPERATURENOMINAL 25
#define TERMISTORNOMINAL 10000
#define BCOEFFICIENT 3977
#define SERIESRESISTOR 10000
{
float ke1,tempa,xin
ke1 = adc_get_value(peak_adc2,peak2);
xin=(1023/ke1)-1;
xin=SERIESRESISTOR/xin;
tempa=xin/TERMISTORNOMINAL;
tempa=log(tempa);
tempa/= BCOEFFICIENT;
tempa+=1.0/(TEMPERATURENOMINAL + 273.15);
tempa=1.0/tempa;
tempa-=273.15;
dip204_set_cursor_position(1,3);
//sprintf(ui, "Temp is %.2f deg", Ref);
sprintf(ui, "Temp is %.2f deg", tempa);
dip204_write_string(ui);
}
I checked the voltage using multi-meter for instance in between the thermistor and 10k resistor and in the EVK 1100 using the following line
ke1 = adc_get_value(peak_adc2,peak2)*3.3/1024;
I get the same voltage in both.
Not sure where I'm doing a mistake, Hope someone guide me in right direction
Your code looks correct to me, and I suspect a hardware problem may be the culprit.
It seems likely you have inadvertently connected two 10K-ohm pull-up resistors between the ADC input and the +3.3V reference: perhaps one is already populated on the EVK1100 board, and you have added another one externally connected to your thermistor. This would be equivalent to putting both 10K-ohm resistors in parallel with each other, which would be equivalent to a 5K-ohm resistor in series with the thermistor. At 25°C, the thermistor resistance Rt would read 10K ohms, which would produce a voltage of:
+3.3V * (Rt / (Rt + 5K))
= 2.20V
instead of the correct +1.65V. This number is very close to the result you are seeing (+2.17V # 24°C).
You can verify this hypothesis by looking at the schematic and/or PCB for the EVK1100 to see if a 10K-ohm pull-up resistor is connected from the ADC input to +3.3V. If this is the problem, remove one of the two resistors and you should see correct behavior.

measuring time between two rising edges in beaglebone

I am reading sensor output as square wave(0-5 volt) via oscilloscope. Now I want to measure frequency of one period with Beaglebone. So I should measure the time between two rising edges. However, I don't have any experience with working Beaglebone. Can you give some advices or sample codes about measuring time between rising edges?
How deterministic do you need this to be? If you can tolerate some inaccuracy, you can probably do it on the main Linux OS; if you want to be fancy pants, this seems like a potential use case for the BBB's PRU's (which I unfortunately haven't used so take this with substantial amounts of salt). I would expect you'd be able to write PRU code that just sits with an infinite outerloop and then inside that loop, start looping until it sees the pin shows 0, then starts looping until the pin shows 1 (this is the first rising edge), then starts counting until either the pin shows 0 again (this would then be the falling edge) or another loop to the next rising edge... either way, you could take the counter value and you should be able to directly convert that into time (the PRU is states as having fixed frequency for each instruction, and is a 200Mhz (50ns/instruction). Assuming your loop is something like
#starting with pin low
inner loop 1:
registerX = loadPin
increment counter
jump if zero registerX to inner loop 1
# pin is now high
inner loop 2:
registerX = loadPin
increment counter
jump if one registerX to inner loop 2
# pin is now low again
That should take 3 instructions per counter increment, so you can get the time as 3 * counter * 50 ns.
As suggested by Foon in his answer, the PRUs are a good fit for this task (although depending on your requirements it may be fine to use the ARM processor and standard GPIO). Please note that (as far as I know) both the regular GPIOs and the PRU inputs are based on 3.3V logic, and connecting a 5V signal might fry your board! You will need an additional component or circuit to convert from 5V to 3.3V.
I've written a basic example that measures timing between rising edges on the header pin P8.15 for my own purpose of measuring an engine's rpm. If you decide to use it, you should check the timing results against a known reference. It's about right but I haven't checked it carefully at all. It is implemented using PRU assembly and uses the pypruss python module to simplify interfacing.

Where does the limitation of 10^15 in D.J. Bernstein's 'primegen' program come from?

At http://cr.yp.to/primegen.html you can find sources of program that uses Atkin's sieve to generate primes. As the author says that it may take few months to answer an e-mail sent to him (I understand that, he sure is an occupied man!) I'm posting this question.
The page states that 'primegen can generate primes up to 1000000000000000'. I am trying to understand why it is so. There is of course a limitation up to 2^64 ~ 2 * 10^19 (size of long unsigned int) because this is how the numbers are represented. I know for sure that if there would be a huge prime gap (> 2^31) then printing of numbers would fail. However in this range I think there is no such prime gap.
Either the author overestimated the bound (and really it is around 10^19) or there is a place in the source code where the arithmetic operation can overflow or something like that.
The funny thing is that you actually MAY run it for numbers > 10^15:
./primes 10000000000000000 10000000000000100
10000000000000061
10000000000000069
10000000000000079
10000000000000099
and if you believe Wolfram Alpha, it is correct.
Some facts I had "reverse-engineered":
numbers are sifted in batches of 1,920 * PRIMEGEN_WORDS = 3,932,160 numbers (see primegen_fill function in primegen_next.c)
PRIMEGEN_WORDS controls how big a single sifting is - you can adjust it in primegen_impl.h to fit your CPU cache,
the implementation of the sieve itself is in primegen.c file - I assume it is correct; what you get is a bitmask of primes in pg->buf (see primegen_fill function)
The bitmask is analyzed and primes are stored in pg->p array.
I see no point where the overflow may happen.
I wish I was on my computer to look, but I suspect you would have different success if you started at 1 as your lower bound.
Just from the algorithm, I would conclude that the upper bound comes from the 32 bit numbers.
The page mentiones Pentium-III as CPU so my guess it is very old and does not use 64 bit.
2^32 are approx 10^9. Sieve of Atkins (which the algorithm uses) requires N^(1/2) bits (it uses a big bitfield). Which means in 2^32 big memory you can make (conservativ) N approx 10^15. As this number is a rough conservative upper bound (you have system and other programs occupying memory, reserving address ranges for IO,...) the real upper bound is/might be higher.

What are the most hardcore optimisations you've seen?

I'm not talking about algorithmic stuff (eg use quicksort instead of bubblesort), and I'm not talking about simple things like loop unrolling.
I'm talking about the hardcore stuff. Like Tiny Teensy ELF, The Story of Mel; practically everything in the demoscene, and so on.
I once wrote a brute force RC5 key search that processed two keys at a time, the first key used the integer pipeline, the second key used the SSE pipelines and the two were interleaved at the instruction level. This was then coupled with a supervisor program that ran an instance of the code on each core in the system. In total, the code ran about 25 times faster than a naive C version.
In one (here unnamed) video game engine I worked with, they had rewritten the model-export tool (the thing that turns a Maya mesh into something the game loads) so that instead of just emitting data, it would actually emit the exact stream of microinstructions that would be necessary to render that particular model. It used a genetic algorithm to find the one that would run in the minimum number of cycles. That is to say, the data format for a given model was actually a perfectly-optimized subroutine for rendering just that model. So, drawing a mesh to the screen meant loading it into memory and branching into it.
(This wasn't for a PC, but for a console that had a vector unit separate and parallel to the CPU.)
In the early days of DOS when we used floppy discs for all data transport there were viruses as well. One common way for viruses to infect different computers was to copy a virus bootloader into the bootsector of an inserted floppydisc. When the user inserted the floppydisc into another computer and rebooted without remembering to remove the floppy, the virus was run and infected the harddrive bootsector, thus permanently infecting the host PC. A particulary annoying virus I was infected by was called "Form", to battle this I wrote a custom floppy bootsector that had the following features:
Validate the bootsector of the host harddrive and make sure it was not infected.
Validate the floppy bootsector and
make sure that it was not infected.
Code to remove the virus from the
harddrive if it was infected.
Code to duplicate the antivirus
bootsector to another floppy if a
special key was pressed.
Code to boot the harddrive if all was
well, and no infections was found.
This was done in the program space of a bootsector, about 440 bytes :)
The biggest problem for my mates was the very cryptic messages displayed because I needed all the space for code. It was like "FFVD RM?", which meant "FindForm Virus Detected, Remove?"
I was quite happy with that piece of code. The optimization was program size, not speed. Two quite different optimizations in assembly.
My favorite is the floating point inverse square root via integer operations. This is a cool little hack on how floating point values are stored and can execute faster (even doing a 1/result is faster than the stock-standard square root function) or produce more accurate results than the standard methods.
In c/c++ the code is: (sourced from Wikipedia)
float InvSqrt (float x)
{
float xhalf = 0.5f*x;
int i = *(int*)&x;
i = 0x5f3759df - (i>>1); // Now this is what you call a real magic number
x = *(float*)&i;
x = x*(1.5f - xhalf*x*x);
return x;
}
A Very Biological Optimisation
Quick background: Triplets of DNA nucleotides (A, C, G and T) encode amino acids, which are joined into proteins, which are what make up most of most living things.
Ordinarily, each different protein requires a separate sequence of DNA triplets (its "gene") to encode its amino acids -- so e.g. 3 proteins of lengths 30, 40, and 50 would require 90 + 120 + 150 = 360 nucleotides in total. However, in viruses, space is at a premium -- so some viruses overlap the DNA sequences for different genes, using the fact that there are 6 possible "reading frames" to use for DNA-to-protein translation (namely starting from a position that is divisible by 3; from a position that divides 3 with remainder 1; or from a position that divides 3 with remainder 2; and the same again, but reading the sequence in reverse.)
For comparison: Try writing an x86 assembly language program where the 300-byte function doFoo() begins at offset 0x1000... and another 200-byte function doBar() starts at offset 0x1001! (I propose a name for this competition: Are you smarter than Hepatitis B?)
That's hardcore space optimisation!
UPDATE: Links to further info:
Reading Frames on Wikipedia suggests Hepatitis B and "Barley Yellow Dwarf" virus (a plant virus) both overlap reading frames.
Hepatitis B genome info on Wikipedia. Seems that different reading-frame subunits produce different variations of a surface protein.
Or you could google for "overlapping reading frames"
Seems this can even happen in mammals! Extensively overlapping reading frames in a second mammalian gene is a 2001 scientific paper by Marilyn Kozak that talks about a "second" gene in rat with "extensive overlapping reading frames". (This is quite surprising as mammals have a genome structure that provides ample room for separate genes for separate proteins.) Haven't read beyond the abstract myself.
I wrote a tile-based game engine for the Apple IIgs in 65816 assembly language a few years ago. This was a fairly slow machine and programming "on the metal" is a virtual requirement for coaxing out acceptable performance.
In order to quickly update the graphics screen one has to map the stack to the screen in order to use some special instructions that allow one to update 4 screen pixels in only 5 machine cycles. This is nothing particularly fantastic and is described in detail in IIgs Tech Note #70. The hard-core bit was how I had to organize the code to make it flexible enough to be a general-purpose library while still maintaining maximum speed.
I decomposed the graphics screen into scan lines and created a 246 byte code buffer to insert the specialized 65816 opcodes. The 246 bytes are needed because each scan line of the graphics screen is 80 words wide and 1 additional word is required on each end for smooth scrolling. The Push Effective Address (PEA) instruction takes up 3 bytes, so 3 * (80 + 1 + 1) = 246 bytes.
The graphics screen is rendered by jumping to an address within the 246 byte code buffer that corresponds to the right edge of the screen and patching in a BRanch Always (BRA) instruction into the code at the word immediately following the left-most word. The BRA instruction takes a signed 8-bit offset as its argument, so it just barely has the range to jump out of the code buffer.
Even this isn't too terribly difficult, but the real hard-core optimization comes in here. My graphics engine actually supported two independent background layers and animated tiles by using different 3-byte code sequences depending on the mode:
Background 1 uses a Push Effective Address (PEA) instruction
Background 2 uses a Load Indirect Indexed (LDA ($00),y) instruction followed by a push (PHA)
Animated tiles use a Load Direct Page Indexed (LDA $00,x) instruction followed by a push (PHA)
The critical restriction is that both of the 65816 registers (X and Y) are used to reference data and cannot be modified. Further the direct page register (D) is set based on the origin of the second background and cannot be changed; the data bank register is set to the data bank that holds pixel data for the second background and cannot be changed; the stack pointer (S) is mapped to graphics screen, so there is no possibility of jumping to a subroutine and returning.
Given these restrictions, I had the need to quickly handle cases where a word that is about to be pushed onto the stack is mixed, i.e. half comes from Background 1 and half from Background 2. My solution was to trade memory for speed. Because all of the normal registers were in use, I only had the Program Counter (PC) register to work with. My solution was the following:
Define a code fragment to do the blend in the same 64K program bank as the code buffer
Create a copy of this code for each of the 82 words
There is a 1-1 correspondence, so the return from the code fragment can be a hard-coded address
Done! We have a hard-coded subroutine that does not affect the CPU registers.
Here is the actual code fragments
code_buff: PEA $0000 ; rightmost word (16-bits = 4 pixels)
PEA $0000 ; background 1
PEA $0000 ; background 1
PEA $0000 ; background 1
LDA (72),y ; background 2
PHA
LDA (70),y ; background 2
PHA
JMP word_68 ; mix the data
word_68_rtn: PEA $0000 ; more background 1
...
PEA $0000
BRA *+40 ; patched exit code
...
word_68: LDA (68),y ; load data for background 2
AND #$00FF ; mask
ORA #$AB00 ; blend with data from background 1
PHA
JMP word_68_rtn ; jump back
word_66: LDA (66),y
...
The end result was a near-optimal blitter that has minimal overhead and cranks out more than 15 frames per second at 320x200 on a 2.5 MHz CPU with a 1 MB/s memory bus.
Michael Abrash's "Zen of Assembly Language" had some nifty stuff, though I admit I don't recall specifics off the top of my head.
Actually it seems like everything Abrash wrote had some nifty optimization stuff in it.
The Stalin Scheme compiler is pretty crazy in that aspect.
I once saw a switch statement with a lot of empty cases, a comment at the head of the switch said something along the lines of:
Added case statements that are never hit because the compiler only turns the switch into a jump-table if there are more than N cases
I forget what N was. This was in the source code for Windows that was leaked in 2004.
I've gone to the Intel (or AMD) architecture references to see what instructions there are. movsx - move with sign extension is awesome for moving little signed values into big spaces, for example, in one instruction.
Likewise, if you know you only use 16-bit values, but you can access all of EAX, EBX, ECX, EDX , etc- then you have 8 very fast locations for values - just rotate the registers by 16 bits to access the other values.
The EFF DES cracker, which used custom-built hardware to generate candidate keys (the hardware they made could prove a key isn't the solution, but could not prove a key was the solution) which were then tested with a more conventional code.
The FSG 2.0 packer made by a Polish team, specifically made for packing executables made with assembly. If packing assembly isn't impressive enough (what's supposed to be almost as low as possible) the loader it comes with is 158 bytes and fully functional. If you try packing any assembly made .exe with something like UPX, it will throw a NotCompressableException at you ;)