How to use callbackFlow within a flow? - kotlin

I'm trying to wrap a callbackFlow within an outer flow - there are items I'd like to emit from the outer flow, but I've got an old callback interface, which I'd like to adapt to Kotlin flow. I've looked at several examples of usage of callbackFlow but I can't figure out how to properly trigger it within another flow.
Here's an example:
class Processor {
fun start(processProgress: ProcessProgressListener) {
processProgress.onFinished() //finishes as soon as it starts!
}
}
interface ProcessProgressListener {
fun onFinished()
}
//main method here:
fun startProcess(processor: Processor): Flow<String> {
val mainFlow = flow {
emit("STARTED")
emit("IN_PROGRESS")
}
return merge(processProgressFlow(processor), mainFlow)
}
fun processProgressFlow(processor: Processor) = callbackFlow {
val listener = object : ProcessProgressListener {
override fun onFinished() {
trySend("FINISHED")
}
}
processor.start(listener)
}
The Processor takes a listener, which is triggered when the process has finished. When that happens, I would like to emit the final item FINISHED.
The way I invoke the whole flow is as follows:
runBlocking {
startProcess(Processor()).collect {
print(it)
}
}
But, I get no output whatsoever. If I don't use the megre and only return the mainFlow, however, I do get the STARTED and IN_PROGRESS items though.
What am I doing wrong?

You forgot to call awaitClose in the end of callbackFlow block:
fun processProgressFlow(processor: Processor) = callbackFlow<String> {
val listener = object : ProcessProgressListener {
override fun onFinished() {
trySend("FINISHED")
channel.close()
}
}
processor.start(listener)
/*
* Suspends until 'channel.close() or cancel()' is invoked
* or flow collector is cancelled (e.g. by 'take(1)' or because a collector's coroutine was cancelled).
* In both cases, callback will be properly unregistered.
*/
awaitClose { /* unregister listener here */ }
}
awaitClose {} should be used in the end of callbackFlow block.
Otherwise, a callback/listener may leak in case of external cancellation.
According to the callbackFlow docs:
awaitClose should be used to keep the flow running, otherwise the channel will be closed immediately when block completes. awaitClose argument is called either when a flow consumer cancels the flow collection or when a callback-based API invokes SendChannel.close manually and is typically used to cleanup the resources after the completion, e.g. unregister a callback. Using awaitClose is mandatory in order to prevent memory leaks when the flow collection is cancelled, otherwise the callback may keep running even when the flow collector is already completed. To avoid such leaks, this method throws IllegalStateException if block returns, but the channel is not closed yet.

Related

Variable value is still null even after assigning a value inside the listener block [duplicate]

(Disclaimer: There are a ton of questions which arise from people asking about data being null/incorrect when using asynchronous operations through requests such as facebook,firebase, etc. My intention for this question was to provide a simple answer for that problem to everyone starting out with asynchronous operations in android)
I'm trying to get data from one of my operations, when I debug it using breakpoints or logs, the values are there, but when I run it they are always null, how can I solve this ?
Firebase
firebaseFirestore.collection("some collection").get()
.addOnSuccessListener(new OnSuccessListener<QuerySnapshot>() {
#Override
public void onSuccess(QuerySnapshot documentSnapshots) {
//I want to return these values I receive here...
});
//...and use the returned value here.
Facebook
GraphRequest request = GraphRequest.newGraphPathRequest(
accessToken,
"some path",
new GraphRequest.Callback() {
#Override
public void onCompleted(GraphResponse response) {
//I want to return these values I receive here...
}
});
request.executeAsync();
//...and use the returned value here.
Kotlin coroutine
var result: SomeResultType? = null
someScope.launch {
result = someSuspendFunctionToRetrieveSomething()
//I want to return the value I received here...
}
Log.d("result", result.toString()) //...but it is still null here.
Etc.
What is a Synchronous/Asynchronous operation ?
Well, Synchronous waits until the task has completed. Your code executes "top-down" in this situation.
Asynchronous completes a task in the background and can notify you when it is complete.
If you want to return the values from an async operation through a method/function, you can define your own callbacks in your method/function to use these values as they are returned from these operations.
Here's how for Java
Start off by defining an interface :
interface Callback {
void myResponseCallback(YourReturnType result);//whatever your return type is: string, integer, etc.
}
next, change your method signature to be like this :
public void foo(final Callback callback) { // make your method, which was previously returning something, return void, and add in the new callback interface.
next up, wherever you previously wanted to use those values, add this line :
callback.myResponseCallback(yourResponseObject);
as an example :
#Override
public void onSuccess(QuerySnapshot documentSnapshots) {
// create your object you want to return here
String bar = document.get("something").toString();
callback.myResponseCallback(bar);
})
now, where you were previously calling your method called foo:
foo(new Callback() {
#Override
public void myResponseCallback(YourReturnType result) {
//here, this result parameter that comes through is your api call result to use, so use this result right here to do any operation you previously wanted to do.
}
});
}
How do you do this for Kotlin ?
(as a basic example where you only care for a single result)
start off by changing your method signature to something like this:
fun foo(callback:(YourReturnType) -> Unit) {
.....
then, inside your asynchronous operation's result :
firestore.collection("something")
.document("document").get()
.addOnSuccessListener {
val bar = it.get("something").toString()
callback(bar)
}
then, where you would have previously called your method called foo, you now do this :
foo() { result->
// here, this result parameter that comes through is
// whatever you passed to the callback in the code aboce,
// so use this result right here to do any operation
// you previously wanted to do.
}
// Be aware that code outside the callback here will run
// BEFORE the code above, and cannot rely on any data that may
// be set inside the callback.
if your foo method previously took in parameters :
fun foo(value:SomeType, callback:(YourType) -> Unit)
you simply change it to :
foo(yourValueHere) { result ->
// here, this result parameter that comes through is
// whatever you passed to the callback in the code aboce,
// so use this result right here to do any operation
// you previously wanted to do.
}
these solutions show how you can create a method/function to return values from async operations you've performed through the use of callbacks.
However, it is important to understand that, should you not be interested in creating a method/function for these:
#Override
public void onSuccess(SomeApiObjectType someApiResult) {
// here, this `onSuccess` callback provided by the api
// already has the data you're looking for (in this example,
// that data would be `someApiResult`).
// you can simply add all your relevant code which would
// be using this result inside this block here, this will
// include any manipulation of data, populating adapters, etc.
// this is the only place where you will have access to the
// data returned by the api call, assuming your api follows
// this pattern
})
There's a particular pattern of this nature I've seen repeatedly, and I think an explanation of what's happening would help. The pattern is a function/method that calls an API, assigning the result to a variable in the callback, and returns that variable.
The following function/method always returns null, even if the result from the API is not null.
Kotlin
fun foo(): String? {
var myReturnValue: String? = null
someApi.addOnSuccessListener { result ->
myReturnValue = result.value
}.execute()
return myReturnValue
}
Kotlin coroutine
fun foo(): String? {
var myReturnValue: String? = null
lifecycleScope.launch {
myReturnValue = someApiSuspendFunction()
}
return myReturnValue
}
Java 8
private String fooValue = null;
private String foo() {
someApi.addOnSuccessListener(result -> fooValue = result.getValue())
.execute();
return fooValue;
}
Java 7
private String fooValue = null;
private String foo() {
someApi.addOnSuccessListener(new OnSuccessListener<String>() {
public void onSuccess(Result<String> result) {
fooValue = result.getValue();
}
}).execute();
return fooValue;
}
The reason is that when you pass a callback or listener to an API function, that callback code will only be run some time in the future, when the API is done with its work. By passing the callback to the API function, you are queuing up work, but the current function (foo() in this case) returns immediately before that work begins and before that callback code is run.
Or in the case of the coroutine example above, the launched coroutine is very unlikely to complete before the function that started it.
Your function that calls the API cannot return the result that is returned in the callback (unless it's a Kotlin coroutine suspend function). The solution, explained in the other answer, is to make your own function take a callback parameter and not return anything.
Alternatively, if you're working with coroutines, you can make your function suspend instead of launching a separate coroutine. When you have suspend functions, somewhere in your code you must launch a coroutine and handle the results within the coroutine. Typically, you would launch a coroutine in a lifecycle function like onCreate(), or in a UI callback like in an OnClickListener.
Other answer explains how to consume APIs based on callbacks by exposing a similar callbacks-based API in the outer function. However, recently Kotlin coroutines become more and more popular, especially on Android and while using them, callbacks are generally discouraged for such purposes. Kotlin approach is to use suspend functions instead. Therefore, if our application uses coroutines already, I suggest not propagating callbacks APIs from 3rd party libraries to the rest of our code, but converting them to suspend functions.
Converting callbacks to suspend
Let's assume we have this callback API:
interface Service {
fun getData(callback: Callback<String>)
}
interface Callback<in T> {
fun onSuccess(value: T)
fun onFailure(throwable: Throwable)
}
We can convert it to suspend function using suspendCoroutine():
private val service: Service
suspend fun getData(): String {
return suspendCoroutine { cont ->
service.getData(object : Callback<String> {
override fun onSuccess(value: String) {
cont.resume(value)
}
override fun onFailure(throwable: Throwable) {
cont.resumeWithException(throwable)
}
})
}
}
This way getData() can return the data directly and synchronously, so other suspend functions can use it very easily:
suspend fun otherFunction() {
val data = getData()
println(data)
}
Note that we don't have to use withContext(Dispatchers.IO) { ... } here. We can even invoke getData() from the main thread as long as we are inside the coroutine context (e.g. inside Dispatchers.Main) - main thread won't be blocked.
Cancellations
If the callback service supports cancelling of background tasks then it is best to cancel when the calling coroutine is itself cancelled. Let's add a cancelling feature to our callback API:
interface Service {
fun getData(callback: Callback<String>): Task
}
interface Task {
fun cancel();
}
Now, Service.getData() returns Task that we can use to cancel the operation. We can consume it almost the same as previously, but with small changes:
suspend fun getData(): String {
return suspendCancellableCoroutine { cont ->
val task = service.getData(object : Callback<String> {
...
})
cont.invokeOnCancellation {
task.cancel()
}
}
}
We only need to switch from suspendCoroutine() to suspendCancellableCoroutine() and add invokeOnCancellation() block.
Example using Retrofit
interface GitHubService {
#GET("users/{user}/repos")
fun listRepos(#Path("user") user: String): Call<List<Repo>>
}
suspend fun listRepos(user: String): List<Repo> {
val retrofit = Retrofit.Builder()
.baseUrl("https://api.github.com/")
.build()
val service = retrofit.create<GitHubService>()
return suspendCancellableCoroutine { cont ->
val call = service.listRepos(user)
call.enqueue(object : Callback<List<Repo>> {
override fun onResponse(call: Call<List<Repo>>, response: Response<List<Repo>>) {
if (response.isSuccessful) {
cont.resume(response.body()!!)
} else {
// just an example
cont.resumeWithException(Exception("Received error response: ${response.message()}"))
}
}
override fun onFailure(call: Call<List<Repo>>, t: Throwable) {
cont.resumeWithException(t)
}
})
cont.invokeOnCancellation {
call.cancel()
}
}
}
Native support
Before we start converting callbacks to suspend functions, it is worth checking whether the library that we use does support suspend functions already: natively or with some extension. Many popular libraries like Retrofit or Firebase support coroutines and suspend functions. Usually, they either provide/handle suspend functions directly or they provide suspendable waiting on top of their asynchronous task/call/etc. object. Such waiting is very often named await().
For example, Retrofit supports suspend functions directly since 2.6.0:
interface GitHubService {
#GET("users/{user}/repos")
suspend fun listRepos(#Path("user") user: String): List<Repo>
}
Note that we not only added suspend, but also we no longer return Call, but the result directly. Now, we can use it without all this enqueue() boilerplate:
val repos = service.listRepos(user)
TL;DR The code you pass to these APIs (e.g. in the onSuccessListener) is a callback, and it runs asynchronously (not in the order it is written in your file). It runs at some point later in the future to "call back" into your code. Without using a coroutine to suspend the program, you cannot "return" data retrieved in a callback from a function.
What is a callback?
A callback is a piece of code you pass to some third party library that it will run later when some event happens (e.g. when it gets data from a server). It is important to remember that the callback is not run in the order you wrote it - it may be run much later in the future, could run multiple times, or may never run at all. The example callback below will run Point A, start the server fetching process, run Point C, exit the function, then some time in the distant future may run Point B when the data is retrieved. The printout at Point C will always be empty.
fun getResult() {
// Point A
var r = ""
doc.get().addOnSuccessListener { result ->
// The code inside the {} here is the "callback"
// Point B - handle result
r = result // don't do this!
}
// Point C - r="" still here, point B hasn't run yet
println(r)
}
How do I get the data from the callback then?
Make your own interface/callback
Making your own custom interface/callback can sometimes make things cleaner looking but it doesn't really help with the core question of how to use the data outside the callback - it just moves the aysnc call to another location. It can help if the primary API call is somewhere else (e.g. in another class).
// you made your own callback to use in the
// async API
fun getResultImpl(callback: (String)->Unit) {
doc.get().addOnSuccessListener { result ->
callback(result)
}
}
// but if you use it like this, you still have
// the EXACT same problem as before - the printout
// will always be empty
fun getResult() {
var r = ""
getResultImpl { result ->
// this part is STILL an async callback,
// and runs later in the future
r = result
}
println(r) // always empty here
}
// you still have to do things INSIDE the callback,
// you could move getResultImpl to another class now,
// but still have the same potential pitfalls as before
fun getResult() {
getResultImpl { result ->
println(result)
}
}
Some examples of how to properly use a custom callback: example 1, example 2, example 3
Make the callback a suspend function
Another option is to turn the async method into a suspend function using coroutines so it can wait for the callback to complete. This lets you write linear-looking functions again.
suspend fun getResult() {
val result = suspendCoroutine { cont ->
doc.get().addOnSuccessListener { result ->
cont.resume(result)
}
}
// the first line will suspend the coroutine and wait
// until the async method returns a result. If the
// callback could be called multiple times this may not
// be the best pattern to use
println(result)
}
Re-arrange your program into smaller functions
Instead of writing monolithic linear functions, break the work up into several functions and call them from within the callbacks. You should not try to modify local variables within the callback and return or use them after the callback (e.g. Point C). You have to move away from the idea of returning data from a function when it comes from an async API - without a coroutine this generally isn't possible.
For example, you could handle the async data in a separate method (a "processing method") and do as little as possible in the callback itself other than call the processing method with the received result. This helps avoid a lot of the common errors with async APIs where you attempt to modify local variables declared outside the callback scope or try to return things modified from within the callback. When you call getResult it starts the process of getting the data. When that process is complete (some time in the future) the callback calls showResult to show it.
fun getResult() {
doc.get().addOnSuccessListener { result ->
showResult(result)
}
// don't try to show or return the result here!
}
fun showResult(result: String) {
println(result)
}
Example
As a concrete example here is a minimal ViewModel showing how one could include an async API into a program flow to fetch data, process it, and display it in an Activity or Fragment. This is written in Kotlin but is equally applicable to Java.
class MainViewModel : ViewModel() {
private val textLiveData = MutableLiveData<String>()
val text: LiveData<String>
get() = textLiveData
fun fetchData() {
// Use a coroutine here to make a dummy async call,
// this is where you could call Firestore or other API
// Note that this method does not _return_ the requested data!
viewModelScope.launch {
delay(3000)
// pretend this is a slow network call, this part
// won't run until 3000 ms later
val t = Calendar.getInstance().time
processData(t.toString())
}
// anything out here will run immediately, it will not
// wait for the "slow" code above to run first
}
private fun processData(d: String) {
// Once you get the data you may want to modify it before displaying it.
val p = "The time is $d"
textLiveData.postValue(p)
}
}
A real API call in fetchData() might look something more like this
fun fetchData() {
firestoreDB.collection("data")
.document("mydoc")
.get()
.addOnCompleteListener { task ->
if (task.isSuccessful) {
val data = task.result.data
processData(data["time"])
}
else {
textLiveData.postValue("ERROR")
}
}
}
The Activity or Fragment that goes along with this doesn't need to know anything about these calls, it just passes actions in by calling methods on the ViewModel and observes the LiveData to update its views when new data is available. It cannot assume that the data is available immediately after a call to fetchData(), but with this pattern it doesn't need to.
The view layer can also do things like show and hide a progress bar while the data is being loaded so the user knows it's working in the background.
class MainActivity : AppCompatActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
val binding = ActivityMainBinding.inflate(layoutInflater)
setContentView(binding.root)
val model: MainViewModel by viewModels()
// Observe the LiveData and when it changes, update the
// state of the Views
model.text.observe(this) { processedData ->
binding.text.text = processedData
binding.progress.visibility = View.GONE
}
// When the user clicks the button, pass that action to the
// ViewModel by calling "fetchData()"
binding.getText.setOnClickListener {
binding.progress.visibility = View.VISIBLE
model.fetchData()
}
binding.progress.visibility = View.GONE
}
}
The ViewModel is not strictly necessary for this type of async workflow - here is an example of how to do the same thing in the activity
class MainActivity : AppCompatActivity() {
private lateinit var binding: ActivityMainBinding
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
binding = ActivityMainBinding.inflate(layoutInflater)
setContentView(binding.root)
// When the user clicks the button, trigger the async
// data call
binding.getText.setOnClickListener {
binding.progress.visibility = View.VISIBLE
fetchData()
}
binding.progress.visibility = View.GONE
}
private fun fetchData() {
lifecycleScope.launch {
delay(3000)
val t = Calendar.getInstance().time
processData(t.toString())
}
}
private fun processData(d: String) {
binding.progress.visibility = View.GONE
val p = "The time is $d"
binding.text.text = p
}
}
(and, for completeness, the activity XML)
<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">
<TextView
android:id="#+id/text"
android:layout_margin="16dp"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent"/>
<Button
android:id="#+id/get_text"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_margin="16dp"
android:text="Get Text"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toBottomOf="#+id/text"
/>
<ProgressBar
android:id="#+id/progress"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:padding="48dp"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toBottomOf="#+id/get_text"
/>
</androidx.constraintlayout.widget.ConstraintLayout>

Emit/Send Flow Values into BroadcastChannel

been pretty stuck on an issue with Kotlin flows/channels today. Essentially I want to take the values emitted from a flow, and immediately send them in a channel. We then subscribe to that channel as a flow via an exposed method. The use case here is to have a channel subscription that is always live and a flow that can be turned on and off independently.
private val dataChannel = BroadcastChannel<Data>(1)
suspend fun poll() {
poller.start(POLLING_PERIOD_MILLISECONDS)
.collect {
dataChannel.send(it)
}
}
suspend fun stopPoll() {
poller.stop()
}
suspend fun subscribe(): Flow<Data> {
return dataChannel.asFlow()
}
The simple use case I have here is a poller which returns a channelFlow. Ideally I could then emit to the channel in the collect method. This doesn't seem to work though. My rookie coroutine thought is that because collect and send are suspending, the emissions gets suspended in collect and we get stuck.
Is there any built in functions for flow or channel that can handle this or any other way to achieve this behavior?
For your case you can try to use hot stream of data SharedFlow instead of a Channel:
private val dataFlow = MutableSharedFlow<String>(extraBufferCapacity = 1)
suspend fun poll() {
poller.start(POLLING_PERIOD_MILLISECONDS)
.collect {
dataFlow.tryEmit(it)
}
}
suspend fun stopPoll() {
poller.stop()
}
fun subscribe(): Flow<Data> {
return dataFlow
}
tryEmit() - Tries to emit a value to this shared flow without suspending, so calling it will not suspend the collect block.

Trigger event listeners async with Kotlin Coroutines

I have created an abstract Event class which is used to create events in Kotlin. Now I would like to use Coroutines to call each subscriber asynchronously.
abstract class Event<T> {
private var handlers = listOf<(T) -> Unit>()
infix fun on(handler: (T) -> Unit) {
handlers += handler
println(handlers.count())
}
fun emit(event: T) =
runBlocking {
handlers.forEach { subscriber ->
GlobalScope.launch {
subscriber(event)
}
}
}
}
And a concrete class that can be used to create event listeners and event publishers
class AsyncEventTest {
companion object : Event<AsyncEventTest>()
fun emit() = emit(this)
}
The issue is that when I run the following code I can see it creates all the listeners, but not even half of them are executed.
fun main(args: Array<String>) {
val random = Random(1000)
runBlocking {
// Create a 1000 event listeners with a random delay of 0 - 1000 ms
for (i in 1..1000)
AsyncEventTest on {
GlobalScope.launch {
delay(random.nextLong())
println(i)
}
}
}
println("================")
runBlocking {
// Trigger the event
AsyncEventTest().emit()
}
}
What am I missing here?
Update
When I remove delay(random.nextLong(), all handlers are executed. This is weird, since I'm trying to simulate different response times from the handlers that way and I think a handler should always execute or throw an exception.
You are running the event listeners with GlobalScope.launch() that does not interact with the surrounding runBlocking() scope. Means runBlocking() returns before all launched coroutines are finished. That is the reason you don't see the output.
BTW: your usage of coroutines and runBlocking is not recommended
You should add suspend to the emit() function. The same is true for the handler parameter - make it suspendable.

MutableLiveData: Cannot invoke setValue on a background thread from Coroutine

I'm trying to trigger an update on LiveData from a coroutine:
object AddressList: MutableLiveData<List<Address>>()
fun getAddressesLiveData(): LiveData<List<Address>> {
AddressList.value = listOf()
GlobalScope.launch {
AddressList.value = getAddressList()
}
return AddressList
}
but I get the following error:
IllegalStateException: Cannot invoke setValue on a background thread
Is there a way to make it work with coroutines?
Use liveData.postValue(value) instead of liveData.value = value. It called asynchronous.
From documentation:
postValue - Posts a task to a main thread to set the given value.
You can do one of the following :
object AddressList: MutableLiveData<List<Address>>()
fun getAddressesLiveData(): LiveData<List<Address>> {
AddressList.value = listOf()
GlobalScope.launch {
AddressList.postValue(getAddressList())
}
return AddressList
}
or
fun getAddressesLiveData(): LiveData<List<Address>> {
AddressList.value = listOf()
GlobalScope.launch {
val adresses = getAddressList()
withContext(Dispatchers.Main) {
AddressList.value = adresses
}
}
return AddressList
}
I just figured out that it's possible by using withContext(Dispatchers.Main){}:
object AddressList: MutableLiveData<List<Address>>()
fun getAddressesLiveData(): LiveData<List<Address>> {
GlobalScope.launch {
withContext(Dispatchers.Main){ AddressList.value = getAddressList() }
}
return AddressList
}
Although others have pointed out that, in this case, the library provides its own method to post an operation to the main thread, coroutines provide a general solution that works regardless of a given library's functionality.
The first step is to stop using GlobalScope for background jobs, doing this will lead to leaks where your activity, or scheduled job, or whatever unit of work you invoke this from, may get destroyed, and yet your job will continue in the background and even submit its results to the main thread. Here's what the official documentation on GlobalScope states:
Application code usually should use application-defined CoroutineScope, using async or launch on the instance of GlobalScope is highly discouraged.
You should define your own coroutine scope and its coroutineContext property should contain Dispatchers.Main as the dispatcher. Furthermore, the whole pattern of launching jobs within a function call and returning LiveData (which is basically another kind of Future), isn't the most convenient way to use coroutines. Instead you should have
suspend fun getAddresses() = withContext(Dispatchers.Default) { getAddressList() }
and at the call site you should launch a coroutine, within which you can now freely call getAddresses() as if it was a blocking method and get the addresses directly as a return value.
If you want to updated UI by using Coroutines, there are 2 ways to achieve this
GlobalScope.launch(Dispatchers.Main):
GlobalScope.launch(Dispatchers.Main) {
delay(1000) // 1 sec delay
// call to UI thread
}
And if you want some work to be done in background but after that you want to update UI, this can be achieved by the following:
withContext(Dispatchers.Main)
GlobalScope.launch {
delay(1000) // 1 sec delay
// do some background task
withContext(Dispatchers.Main) {
// call to UI thread
}
}
In my case, I had to add Dispatchers.Main to the launch arguments and it worked fine:
val job = GlobalScope.launch(Dispatchers.Main) {
delay(1500)
search(query)
}
I was facing this error when I called a coroutine inside runBlockingTest for a test case
TestCoroutineRule().runBlockingTest {
}
I got it fixed by adding the instantExecutorRule as a class member
#get:Rule
var instantExecutorRule = InstantTaskExecutorRule()
Below code worked for me for updating livedata from thread:
val adresses = getAddressList()
GlobalScope.launch {
messages.postValue(adresses)
}

Is it possible to suspendCoroutine in a "by lazy" initializer? I get errors of "runBlocking is not allowed in Android main looper thread"

I've got much of my app working fine with "by lazy" initializers because everything magically happens in the order that is necessary.
But not all of the initializers are synchronous. Some of them are wrapping callbacks, which means I need to wait until the callback happens, which means I need runBlocking and suspendCoroutine.
But after refactoring everything, I get this IllegalStateException: runBlocking is not allowed in Android main looper thread
What? You can't block? You're killing me here. What is the right way if my "by lazy" happens to be a blocking function?
private val cameraCaptureSession: CameraCaptureSession by lazy {
runBlocking(Background) {
suspendCoroutine { cont: Continuation<CameraCaptureSession> ->
cameraDevice.createCaptureSession(Arrays.asList(readySurface, imageReader.surface), object : CameraCaptureSession.StateCallback() {
override fun onConfigured(session: CameraCaptureSession) {
cont.resume(session).also {
Log.i(TAG, "Created cameraCaptureSession through createCaptureSession.onConfigured")
}
}
override fun onConfigureFailed(session: CameraCaptureSession) {
cont.resumeWithException(Exception("createCaptureSession.onConfigureFailed")).also {
Log.e(TAG, "onConfigureFailed: Could not configure capture session.")
}
}
}, backgroundHandler)
}
}
}
Full GIST of the class, for getting an idea of what I was originally trying to accomplish: https://gist.github.com/salamanders/aae560d9f72289d5e4b49011fd2ce62b
It is a well-known fact that performing a blocking call on the UI thread results in a completely frozen app for the duration of the call. The documentation of createCaptureSession specifically states
It can take several hundred milliseconds for the session's configuration to complete, since camera hardware may need to be powered on or reconfigured.
It may very easily result in an Application Not Responding dialog and your app being killed. That's why Kotlin has introduced an explicit guard against runBlocking on the UI thread.
Therefore your idea to start this process just in time, when you have already tried to access cameraCaptureSession, cannot work. What you must do instead is wrap the code that accesses it into launch(UI) and turn your val into a suspend fun.
In a nutshell:
private var savedSession: CameraCaptureSession? = null
private suspend fun cameraCaptureSession(): CameraCaptureSession {
savedSession?.also { return it }
return suspendCoroutine { cont ->
cameraDevice.createCaptureSession(listOf(readySurface, imageReader.surface), object : CameraCaptureSession.StateCallback() {
override fun onConfigured(session: CameraCaptureSession) {
savedSession = session
Log.i(TAG, "Created cameraCaptureSession through createCaptureSession.onConfigured")
cont.resume(session)
}
override fun onConfigureFailed(session: CameraCaptureSession) {
Log.e(TAG, "onConfigureFailed: Could not configure capture session.")
cont.resumeWithException(Exception("createCaptureSession.onConfigureFailed"))
}
})
}
}
fun useCamera() {
launch(UI) {
cameraCaptureSession().also { session ->
session.capture(...)
}
}
}
Note that session.capture() is another target for wrapping into a suspend fun.
Also be sure to note that the code I gave is only safe if you can ensure that you won't call cameraCaptureSession() again before the first call has resumed. Check out the followup thread for a more general solution that takes care of that.