I cannot modify the legend of plot of a dataset made with xarray plotting function.
The code below returns No handles with labels found to put in legend.
import xarray as xr
import matplotlib.pyplot as plt
air = xr.tutorial.open_dataset("air_temperature").air
air.isel(lon=10, lat=[19, 21, 22]).plot.line(x="time", add_legend=True)
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
You can use seaborn's sns.move_legend(), followed by plt.tight_layout(). sns.move_legend() is new in seaborn 0.11.2.
import xarray as xr
import matplotlib.pyplot as plt
import seaborn as sns
air = xr.tutorial.open_dataset("air_temperature").air
air.isel(lon=10, lat=[19, 21, 22]).plot.line(x="time", add_legend=True)
sns.move_legend(plt.gca(), loc='center left', bbox_to_anchor=(1, 0.5))
plt.tight_layout()
plt.show()
PS: If you don't want to import seaborn, you could copy the function from its source. You'll need to remove a reference to sns.axisgrid.Grid and import matplotlib as mpl; import inspect:
import matplotlib.pyplot as plt
import matplotlib as mpl
import inspect
import xarray as xr
def move_legend(obj, loc, **kwargs):
"""
Recreate a plot's legend at a new location.
Extracted from seaborn/utils.py
"""
if isinstance(obj, mpl.axes.Axes):
old_legend = obj.legend_
legend_func = obj.legend
elif isinstance(obj, mpl.figure.Figure):
if obj.legends:
old_legend = obj.legends[-1]
else:
old_legend = None
legend_func = obj.legend
else:
err = "`obj` must be a matplotlib Axes or Figure instance."
raise TypeError(err)
if old_legend is None:
err = f"{obj} has no legend attached."
raise ValueError(err)
# Extract the components of the legend we need to reuse
handles = old_legend.legendHandles
labels = [t.get_text() for t in old_legend.get_texts()]
# Extract legend properties that can be passed to the recreation method
# (Vexingly, these don't all round-trip)
legend_kws = inspect.signature(mpl.legend.Legend).parameters
props = {k: v for k, v in old_legend.properties().items() if k in legend_kws}
# Delegate default bbox_to_anchor rules to matplotlib
props.pop("bbox_to_anchor")
# Try to propagate the existing title and font properties; respect new ones too
title = props.pop("title")
if "title" in kwargs:
title.set_text(kwargs.pop("title"))
title_kwargs = {k: v for k, v in kwargs.items() if k.startswith("title_")}
for key, val in title_kwargs.items():
title.set(**{key[6:]: val})
kwargs.pop(key)
# Try to respect the frame visibility
kwargs.setdefault("frameon", old_legend.legendPatch.get_visible())
# Remove the old legend and create the new one
props.update(kwargs)
old_legend.remove()
new_legend = legend_func(handles, labels, loc=loc, **props)
new_legend.set_title(title.get_text(), title.get_fontproperties())
air = xr.tutorial.open_dataset("air_temperature").air
air.isel(lon=10, lat=[19, 21, 22]).plot.line(x="time", add_legend=True)
move_legend(plt.gca(), loc='center left', bbox_to_anchor=(1, 0.5))
plt.tight_layout()
plt.show()
I am making a set of figures with subplots in Jupyter Notebook using matplotlib and geopandas. The top plots (A & B) have geospatial data and use various basemaps (aerial imagery, shaded relief, etc.).
How can I rotate the top two plots 90-degrees, so that they are elongated?
(I will need to redo gridspec layout of course, but that is easy; what I don't know how to do is: rotate the plots but keep the geographic information for basemap plotting.)
Repeatable code is below.
import pandas as pd
import geopandas as gpd
%matplotlib inline
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import contextily as ctx
from shapely.geometry import Point
plt.style.use('seaborn-whitegrid')
### DUMMY DATA
long, lat = [(-118.155, -118.051, -118.08), (38.89, 39.512, 39.1)]
q, t = [(0, 70500, 21000), (0, 8000, -1200)]
df = pd.DataFrame(list(zip(q, t, lat, long)), columns =['q', 't', 'lat', 'long'])
gdf = gpd.GeoDataFrame(df, geometry=gpd.points_from_xy(df['long'], df['lat']))
gdf.crs = "EPSG:4326"
### PLOTTING
fig = plt.figure(figsize=(10,7.5), constrained_layout=True)
gs = fig.add_gridspec(3, 2)
ax1 = fig.add_subplot(gs[0:2, 0])
ax2 = fig.add_subplot(gs[0:2, 1], sharex = ax1, sharey = ax1)
ax3 = fig.add_subplot(gs[-1, :])
### PlotA
gdf.plot(ax = ax1)
ctx.add_basemap(ax1, crs='epsg:4326', source=ctx.providers.Esri.WorldShadedRelief)
ax1.set_aspect('equal')
ax1.set_title('Plot-A')
ax1.tick_params('x', labelrotation=90)
### PlotB
gdf.plot(ax = ax2)
ctx.add_basemap(ax2, crs='epsg:4326', source=ctx.providers.Esri.WorldImagery, alpha=0.5)
ax2.set_aspect('equal')
ax2.set_title('Plot-B')
ax2.tick_params('x', labelrotation=90)
### PlotC
ax3.scatter(df.q, df.t)
ax3.set_aspect('equal')
ax3.set_title('Plot-C')
ax3.set_xlabel('q')
ax3.set_ylabel('t')
I want to animate a point moving along a path from one location to another on the map.
For example, I drawn a path from New York to New Delhi, using Geodetic transform. Eg. taken from docs Adding data to the map
plt.plot([ny_lon, delhi_lon], [ny_lat, delhi_lat],
color='blue', linewidth=2, marker='o',
transform=ccrs.Geodetic(),
)
Now i want to move a point along this path.
My idea was to somehow get some (say 50) points, along the path and plot a marker on each point for each frame. But I am not able to find a way to get the points on the path.
I found a function transform_points under classCRS, but I am unable to use this, as this gives me the same number of points i have, not the points in between.
Thanks in advance!
There are a couple of approaches to this.
The matplotlib approach
I'll start with perhaps the most basic if you are familiar with matplotlib, but this approach suffers from indirectly using cartopy's functionality, and is therefore harder to configure/extend.
There is a private _get_transformed_path method on a Line2D object (the thing that is returned from plt.plot). The resulting TransformedPath object has a get_transformed_path_and_affine method, which basically will give us the projected line (in the coordinate system of the Axes being drawn).
In [1]: import cartopy.crs as ccrs
In [3]: import matplotlib.pyplot as plt
In [4]: ax = plt.axes(projection=ccrs.Robinson())
In [6]: ny_lon, ny_lat = -75, 43
In [7]: delhi_lon, delhi_lat = 77.23, 28.61
In [8]: [line] = plt.plot([ny_lon, delhi_lon], [ny_lat, delhi_lat],
...: color='blue', linewidth=2, marker='o',
...: transform=ccrs.Geodetic(),
...: )
In [9]: t_path = line._get_transformed_path()
In [10]: path_in_data_coords, _ = t_path.get_transformed_path_and_affine()
In [11]: path_in_data_coords.vertices
Out[11]:
array([[-6425061.82215208, 4594257.92617961],
[-5808923.84969279, 5250795.00604155],
[-5206753.88613758, 5777772.51828996],
[-4554622.94040482, 6244967.03723341],
[-3887558.58343227, 6627927.97123701],
[-3200922.19194864, 6932398.19937816],
[-2480001.76507805, 7165675.95095855],
[-1702269.5101901 , 7332885.72276795],
[ -859899.12295981, 7431215.78426759],
[ 23837.23431173, 7453455.61302756],
[ 889905.10635756, 7397128.77301289],
[ 1695586.66856764, 7268519.87627204],
[ 2434052.81300274, 7073912.54130764],
[ 3122221.22299409, 6812894.40443648],
[ 3782033.80448001, 6478364.28561403],
[ 4425266.18173684, 6062312.15662039],
[ 5049148.25986903, 5563097.6328901 ],
[ 5616318.74912886, 5008293.21452795],
[ 6213232.98764984, 4307186.23400115],
[ 6720608.93929235, 3584542.06839575],
[ 7034261.06659143, 3059873.62740856]])
We can pull this together with matplotlib's animation functionality to do as requested:
import cartopy.crs as ccrs
import matplotlib.animation as animation
import matplotlib.pyplot as plt
ax = plt.axes(projection=ccrs.Robinson())
ax.stock_img()
ny_lon, ny_lat = -75, 43
delhi_lon, delhi_lat = 77.23, 28.61
[line] = plt.plot([ny_lon, delhi_lon], [ny_lat, delhi_lat],
color='blue', linewidth=2, marker='o',
transform=ccrs.Geodetic(),
)
t_path = line._get_transformed_path()
path_in_data_coords, _ = t_path.get_transformed_path_and_affine()
# Draw the point that we want to animate.
[point] = plt.plot(ny_lon, ny_lat, marker='o', transform=ax.projection)
def animate_point(i):
verts = path_in_data_coords.vertices
i = i % verts.shape[0]
# Set the coordinates of the line to the coordinate of the path.
point.set_data(verts[i, 0], verts[i, 1])
ani = animation.FuncAnimation(
ax.figure, animate_point,
frames= path_in_data_coords.vertices.shape[0],
interval=125, repeat=True)
ani.save('point_ani.gif', writer='imagemagick')
plt.show()
The cartopy approach
Under the hood, cartopy's matplotlib implementation (as used above), is calling the project_geometry method. We may as well make use of this directly as it is often more convenient to be using Shapely geometries than it is matplotlib Paths.
With this approach, we simply define a shapely geometry, and then construct the source and target coordinate reference systems that we want to convert the geometry from/to:
target_cs.project_geometry(geometry, source_cs)
The only thing we have to watch out for is that the result can be a MultiLineString (or more generally, any Multi- geometry type). However, in our simple case, we don't need to deal with that (incidentally, the same was true of the simple Path returned in the first example).
The code to produce a similar plot to above:
import cartopy.crs as ccrs
import matplotlib.animation as animation
import matplotlib.pyplot as plt
import numpy as np
import shapely.geometry as sgeom
ax = plt.axes(projection=ccrs.Robinson())
ax.stock_img()
ny_lon, ny_lat = -75, 43
delhi_lon, delhi_lat = 77.23, 28.61
line = sgeom.LineString([[ny_lon, ny_lat], [delhi_lon, delhi_lat]])
projected_line = ccrs.PlateCarree().project_geometry(line, ccrs.Geodetic())
# We only animate along one of the projected lines.
if isinstance(projected_line, sgeom.MultiLineString):
projected_line = projected_line.geoms[0]
ax.add_geometries(
[projected_line], ccrs.PlateCarree(),
edgecolor='blue', facecolor='none')
[point] = plt.plot(ny_lon, ny_lat, marker='o', transform=ccrs.PlateCarree())
def animate_point(i):
verts = np.array(projected_line.coords)
i = i % verts.shape[0]
# Set the coordinates of the line to the coordinate of the path.
point.set_data(verts[i, 0], verts[i, 1])
ani = animation.FuncAnimation(
ax.figure, animate_point,
frames=len(projected_line.coords),
interval=125, repeat=True)
ani.save('projected_line_ani.gif', writer='imagemagick')
plt.show()
Final remaaaaarrrrrrks....
The approach naturally generalises to animating any type of matplotlib Arrrrtist.... in this case, I took a bit more control over the great circle resolution, and I animated an image along the great circle:
import cartopy.crs as ccrs
import matplotlib.animation as animation
import matplotlib.pyplot as plt
import numpy as np
import shapely.geometry as sgeom
ax = plt.axes(projection=ccrs.Mercator())
ax.stock_img()
line = sgeom.LineString([[-5.9845, 37.3891], [-82.3666, 23.1136]])
# Higher resolution version of Mercator. Same workaround as found in
# https://github.com/SciTools/cartopy/issues/8#issuecomment-326987465.
class HighRes(ax.projection.__class__):
#property
def threshold(self):
return super(HighRes, self).threshold / 100
projected_line = HighRes().project_geometry(line, ccrs.Geodetic())
# We only animate along one of the projected lines.
if isinstance(projected_line, sgeom.MultiLineString):
projected_line = projected_line.geoms[0]
# Add the projected line to the map.
ax.add_geometries(
[projected_line], ax.projection,
edgecolor='blue', facecolor='none')
def ll_to_extent(x, y, ax_size=(4000000, 4000000)):
"""
Return an image extent in centered on the given
point with the given width and height.
"""
return [x - ax_size[0] / 2, x + ax_size[0] / 2,
y - ax_size[1] / 2, y + ax_size[1] / 2]
# Image from https://pixabay.com/en/sailing-ship-boat-sail-pirate-28930/.
pirate = plt.imread('pirates.png')
img = ax.imshow(pirate, extent=ll_to_extent(0, 0), transform=ax.projection, origin='upper')
ax.set_global()
def animate_ship(i):
verts = np.array(projected_line.coords)
i = i % verts.shape[0]
# Set the extent of the image to the coordinate of the path.
img.set_extent(ll_to_extent(verts[i, 0], verts[i, 1]))
ani = animation.FuncAnimation(
ax.figure, animate_ship,
frames=len(projected_line.coords),
interval=125, repeat=False)
ani.save('arrrr.gif', writer='imagemagick')
plt.show()
All code and images for this answer can be found at https://gist.github.com/pelson/618a5f4ca003e56f06d43815b21848f6.
I am trying to view a basic polygon read from a Shapefile using matplotlib and pyshp
But all my efforts yield just an empty axes with no polygon. Here are few of my tries, using the dataset showing the borders of Belgium:
import shapefile as sf
r = sf.Reader("BEL_adm/BEL_adm0")
p=r.shapes()
b=p[0]
points = b.points
import matplotlib.pyplot as plt
from matplotlib.path import Path
imporst matplotlib.patches as patches
verts = points
verts = []
for x,y in points:
verts.append(tuple([x,y]))
codes = ['']*len(verts)
codes[0] = Path.MOVETO
codes[-1] = Path.CLOSEPOLY
for i in range(1,len(verts)):
codes[i]=Path.LINETO
path = Path(verts, codes)
fig = plt.figure()
ax = fig.add_subplot(111)
patch = patches.PathPatch(path, facecolor='orange', lw=2)
ax.add_patch(patch)
ax.set_xlim(-2,2)
ax.set_ylim(-2,2)
plt.show()
Another try with patches also yields an empty frame:
fig = plt.figure(figsize=(11.7,8.3))
ax = plt.subplot(111)
x,y=zip(*b.points)
import matplotlib.patches as patches
import matplotlib.pyplot as plt
bol=patches.Polygon(b.points,True, transform=ax.transAxes)
ax.add_patch(bol)
ax.set_ylim(0,60)
ax.set_xlim(0,200)
plt.show()
Would be happy to see what I am missing.
Thanks, Oz
instead of calling set_xlim(), set_ylim() to set the range of axis, you can use ax.autoscale().
For your Polygon version, you don't need to set transform argument to ax.transAxes, just call:
bol=patches.Polygon(b.points,True)