In a Sitecore project I've integrated Simple Injector using this article
It uses sitecore pipelines and then uses a method in App_start
namespace BBC.App_Start
{
public class SimpleInjector : IPackage
{
public void RegisterServices(Container container)
{
GetContainer.RegisterServices(container);
container.Register(() => new SitecoreContext(), Lifestyle.Scoped);
container.Register(() => new Container(), Lifestyle.Singleton);
}
}
}
Simply I can inject container into controller constructor but can't have container in View files.
I tried to declare a static property in App-start and save container to it. but still I'm getting no registration type in Views
What is the best way to have container object in views?
As Stephen suggests in his comment, the literal answer to your question is "you shouldn't do that - because it's not really the way MVC and DI are supposed to work". The more detailed answer goes something like this:
The job of your view is to present data that it has been passed via the Model. Views should not really contain logic. Very simple stuff like "if flag is false, hide this block of mark-up" is ok, but the more complex code to work out what the value of the flag is shouldn't be in the view.
MVC tries to make our website code better by encouraging you to separate presentation (the View) from data (the Model) and logic (the Controller). This should make our code easier to work with - So if you have processing that needs doing, then it should really be happening when your controller method runs.
If your view requires some special data, best practice suggests it should work it out in the controller method and pass it to the view in the model. The code might look more like this:
public class MyModel
{
public string SpecialData { get; set; }
}
public class MyController : Controller
{
public ActionResult DoSomething()
{
// do whatever processing is needed
var somethingCalculate = resultFromYourOtherObject();
// do other stuff
var model = new MyModel() { SpecialData = somethingCalculated };
return View(model);
}
}
And then the View just needs to accept the MyModel class as its model, and render the SpecialData property - no logic required.
I think also it's considered a bad idea to have calls to fetch objects from your DI container spread about your codebase. For MVC apps, generally your DI container gets wired in to the process of creating a controller for a request when the app starts up. Rather than passing about a DI Container into your controllers, the DI framework extends the Controller-creation process, and the container isn't exposed outside of this. When the MVC runtime needs to create a controller, the controller-creation logic uses the DI framework to fetch objects for all the controller's dependencies.
Without more detail about what you actually want to achieve, it's difficult to say what the "right" approach to creating your object(s) here is, but the two most common patterns are probably:
1) Constructor injection: Your controller has a parameter which accepts the object required. The DI container creates this object for you at the point where it creates the controller, so your controller gets all its dependencies when it is created. Good for: scenarios where you know how to create the object at the beginning of the request.
public interface IMySpecialObject
{
string DoSomething();
}
public class MyController : Controller
{
private IMySpecialObject _specialObject;
public MyController(IMySpecialObject specialObject)
{
_specialObject = specialObject;
}
public ActionResult RenderAView()
{
// do some stuff
var data = _specialObject.DoSomething();
return View(data);
}
}
As long as IMySpecialObject and a concrete implementation for it are registered with your DI container when your app starts up, all is well.
2) Factory classes: Sometimes, however, the object in question might be optional, or it might require data that's not available at controller-creation time to create it. In that case, your DI framework could pass in a Factory object to your controller, and this is used to do the construction of the special object later.
public interface ISpecialFactory
{
ISpecialObject CreateSpecialObject(object data);
}
public class MyController : Controller
{
private IMySpecialFactory _specialFactory;
public MyController(IMySpecialFactory specialFactory)
{
_specialFactory = specialFactory;
}
public ActionResult RenderAView()
{
// do some stuff
if( requireSpecialObject )
{
var data = getSomeData();
var specialObject = _specialFactory.CreateSpecialObject(data);
var data = _specialObject.DoSomething();
return View(data);
}
return View("someOtherView");
}
}
But a good book on using DI may suggest other approaches that fit your specific problem better.
Looking for some guidance in designing my new MVC 4 app.
I would like to have a url parameter s=2011 on every page of the app to let me know what year of data I'm working with. Obviously, the user will have a way to change that parameter as needed.
I will need that parameter in every controller and wondering the best way to do this. I was thinking of creating a base controller that reads Request.QueryString and puts the year into a public property. However, considering all the extensability points in MVC, I'm wondering if there's a better way to do this?
This very much depends on the design of your app, but just to give you two alternatives
IActionFilter
If you are doing data context per request you can use a global IActionFilter to hook pre-action execution globally and apply a query filter to your data context behind the scenes.
Major down-side of this is that to test the controller you will need to have the full MVC pipeline setup so that the actionfilter gets applied properly.
Dependency Injection
Instead of using sub-classing (base controller as you say) you can use dependency injection . Keeping things more loose will allow you to pull the filter from query string, cookie, user setting in the database or whatever else - without your controller knowing where it comes from.
Here is some pseudo code how I would do it if I was using something like Entity Framework or Nhibernate (also I am sure applicable with other technologies as well)
public Car
{
public string Year { get; set; }
}
public class CarsDataContext : DbContext
{
private IQuerable<Cars> _cars = null;
private Func<Car, bool> _carsFilter = null;
public IQuerable<Car> Cars {
get {
if (_carsFitler != null)
return _cars.Where(_carsFitler);
return _cars;
}
set { _cars = value; }
}
public void ApplyCarsFilter(Func<Car, bool> predicate)
{
_carsFilter = predicate;
}
}
Assuming you have dependency injection setup already (NInject or whichever other framework) in you can configure how the context to be intialized
Bind<CarsDataContext>().ToMethod(() => {
string yearFilter = GetYearFilter(); // can be coming from anywhere
CarsDataContext dataContext = new CarsDataContext();
dataContext.Applyfilter(car => car.Year == yearFilter);
return dataContext;
}).InRequestScope();
Then my controller knows nothing about the data filtering and I can easily test it:
class MyController : Controller
{
public MyController(CarsDataContext dataContext)
{
}
...
}
However I would only do this is filtering the dataset was across many controllers and important part of my software. Otherwise it's pure over-engineering.
Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
We don’t allow questions seeking recommendations for books, tools, software libraries, and more. You can edit the question so it can be answered with facts and citations.
Closed 2 years ago.
Improve this question
I want to demonstrate use of Adapter Pattern to my team. I've read many books and articles online. Everyone is citing an example which are useful to understand the concept (Shape, Memory Card, Electronic Adapter etc.), but there is no real case study.
Can you please share any case study of Adapter Pattern?
p.s. I tried searching existing questions on stackoverflow, but did not find the answer so posting it as a new question. If you know there's already an answer for this, then please redirect.
Many examples of Adapter are trivial or unrealistic (Rectangle vs. LegacyRectangle, Ratchet vs. Socket, SquarePeg vs RoundPeg, Duck vs. Turkey). Worse, many don't show multiple Adapters for different Adaptees (someone cited Java's Arrays.asList as an example of the adapter pattern). Adapting an interface of only one class to work with another seems a weak example of the GoF Adapter pattern. This pattern uses inheritance and polymorphism, so one would expect a good example to show multiple implementations of adapters for different adaptees.
The best example I found is in Chapter 26 of Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development (3rd Edition). The following images are from the instructor material provided on an FTP site for the book.
The first one shows how an application can use multiple implementations (adaptees) that are functionally similar (e.g., tax calculators, accounting modules, credit authorization services, etc.) but have different APIs. We want to avoid hard-coding our domain-layer code to handle the different possible ways to calculate tax, post sales, authorize credit card requests, etc. Those are all external modules that might vary, and for which we can't modify the code. The adapter allows us to do the hard-coding in the adapter, whereas our domain-layer code always uses the same interface (the IWhateverAdapter interface).
We don't see in the above figure the actual adaptees. However, the following figure shows how a polymorphic call to postSale(...) in the IAccountingAdapter interface is made, which results in a posting of the sale via SOAP to an SAP system.
How to turn a french person into a normal person...
public interface IPerson
{
string Name { get; set; }
}
public interface IFrenchPerson
{
string Nom { get; set; }
}
public class Person : IPerson
{
public string Name { get; set; }
}
public class FrenchPerson : IFrenchPerson
{
public string Nom { get; set; }
}
// that is a service that we want to use with our French person
// we cannot or don't want to change the service contract
// therefore we need 'l'Adaptateur'
public class PersonService
{
public void PrintName(IPerson person)
{
Debug.Write(person.Name);
}
}
public class FrenchPersonAdapter : IPerson
{
private readonly IFrenchPerson frenchPerson;
public FrenchPersonAdapter(IFrenchPerson frenchPerson)
{
this.frenchPerson = frenchPerson;
}
public string Name
{
get { return frenchPerson.Nom; }
set { frenchPerson.Nom = value; }
}
}
Example
var service = new PersonService();
var person = new Person();
var frenchPerson = new FrenchPerson();
service.PrintName(person);
service.PrintName(new FrenchPersonAdapter(frenchPerson));
Convert an Interface into another Interface.
Any real example of Adapter Pattern
In order to connect power, we have different interfaces all over the world.
Using Adapter we can connect easily like wise.
Here is an example that simulates converting analog data to digit data.
It provides an adapter that converts float digit data to binary data, it's probably not useful in real world, it just helps to explain the concept of adapter pattern.
Code
AnalogSignal.java
package eric.designpattern.adapter;
public interface AnalogSignal {
float[] getAnalog();
void setAnalog(float[] analogData);
void printAnalog();
}
DigitSignal.java
package eric.designpattern.adapter;
public interface DigitSignal {
byte[] getDigit();
void setDigit(byte[] digitData);
void printDigit();
}
FloatAnalogSignal.java
package eric.designpattern.adapter;
import java.util.Arrays;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class FloatAnalogSignal implements AnalogSignal {
private Logger logger = LoggerFactory.getLogger(this.getClass());
private float[] data;
public FloatAnalogSignal(float[] data) {
this.data = data;
}
#Override
public float[] getAnalog() {
return data;
}
#Override
public void setAnalog(float[] analogData) {
this.data = analogData;
}
#Override
public void printAnalog() {
logger.info("{}", Arrays.toString(getAnalog()));
}
}
BinDigitSignal.java
package eric.designpattern.adapter;
import java.util.Arrays;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class BinDigitSignal implements DigitSignal {
private Logger logger = LoggerFactory.getLogger(this.getClass());
private byte[] data;
public BinDigitSignal(byte[] data) {
this.data = data;
}
#Override
public byte[] getDigit() {
return data;
}
#Override
public void setDigit(byte[] digitData) {
this.data = digitData;
}
#Override
public void printDigit() {
logger.info("{}", Arrays.toString(getDigit()));
}
}
AnalogToDigitAdapter.java
package eric.designpattern.adapter;
import java.util.Arrays;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* <p>
* Adapter - convert analog data to digit data.
* </p>
*
* #author eric
* #date Mar 8, 2016 1:07:00 PM
*/
public class AnalogToDigitAdapter implements DigitSignal {
public static final float DEFAULT_THRESHOLD_FLOAT_TO_BIN = 1.0f; // default threshold,
private Logger logger = LoggerFactory.getLogger(this.getClass());
private AnalogSignal analogSignal;
private byte[] digitData;
private float threshold;
private boolean cached;
public AnalogToDigitAdapter(AnalogSignal analogSignal) {
this(analogSignal, DEFAULT_THRESHOLD_FLOAT_TO_BIN);
}
public AnalogToDigitAdapter(AnalogSignal analogSignal, float threshold) {
this.analogSignal = analogSignal;
this.threshold = threshold;
this.cached = false;
}
#Override
public synchronized byte[] getDigit() {
if (!cached) {
float[] analogData = analogSignal.getAnalog();
int len = analogData.length;
digitData = new byte[len];
for (int i = 0; i < len; i++) {
digitData[i] = floatToByte(analogData[i]);
}
}
return digitData;
}
// not supported, should set the inner analog data instead,
#Override
public void setDigit(byte[] digitData) {
throw new UnsupportedOperationException();
}
public synchronized void setAnalogData(float[] analogData) {
invalidCache();
this.analogSignal.setAnalog(analogData);
}
public synchronized void invalidCache() {
cached = false;
digitData = null;
}
#Override
public void printDigit() {
logger.info("{}", Arrays.toString(getDigit()));
}
// float -> byte convert,
private byte floatToByte(float f) {
return (byte) (f >= threshold ? 1 : 0);
}
}
Code - Test case
AdapterTest.java
package eric.designpattern.adapter.test;
import java.util.Arrays;
import junit.framework.TestCase;
import org.junit.Test;
import eric.designpattern.adapter.AnalogSignal;
import eric.designpattern.adapter.AnalogToDigitAdapter;
import eric.designpattern.adapter.BinDigitSignal;
import eric.designpattern.adapter.DigitSignal;
import eric.designpattern.adapter.FloatAnalogSignal;
public class AdapterTest extends TestCase {
private float[] analogData = { 0.2f, 1.4f, 3.12f, 0.9f };
private byte[] binData = { 0, 1, 1, 0 };
private float[] analogData2 = { 1.2f, 1.4f, 0.12f, 0.9f };
#Test
public void testAdapter() {
AnalogSignal analogSignal = new FloatAnalogSignal(analogData);
analogSignal.printAnalog();
DigitSignal digitSignal = new BinDigitSignal(binData);
digitSignal.printDigit();
// adapter
AnalogToDigitAdapter adAdapter = new AnalogToDigitAdapter(analogSignal);
adAdapter.printDigit();
assertTrue(Arrays.equals(digitSignal.getDigit(), adAdapter.getDigit()));
adAdapter.setAnalogData(analogData2);
adAdapter.printDigit();
assertFalse(Arrays.equals(digitSignal.getDigit(), adAdapter.getDigit()));
}
}
Dependence - via maven
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.8.2</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>1.7.13</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>1.7.13</version>
</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.16</version>
</dependency>
How to test
Just run the unit test.
Adapter pattern works as a bridge between two incompatible interfaces.
This pattern involves a single class called adapter which is
responsible for communication between two independent or incompatible
interfaces.
Real-world examples might be a language translator or a mobile charger. More here in this youtube video:
Youtube - Adapter Design pattern: Introduction
You can use the Adapter design pattern when you have to deal with different interfaces with similar behavior (which usually means classes with similar behavior but with different methods). An example of it would be a class to connect to a Samsung TV and another one to connect to a Sony TV. They will share common behavior like open menu, start playback, connect to a network and etc but each library will have a different implementation of it (with different method names and signatures). These different vendor specific implementations are called Adaptee in the UML diagrams.
So, in your code (called Client in the UML diagrams), instead of hard code the method calls of each vendor (or Adaptee), you could then create a generic interface (called Target in UML diagrams) to wrap these similar behaviors and work with only one type of object.
The Adapters will then implement the Target interface delegating its method calls to the Adaptees that are passed to the Adapters via constructor.
For you to realize this in Java code, I wrote a very simple project using exactly the same example mentioned above using adapters to deal with multiple smart TV interfaces. The code is small, well documented and self explanatory so dig on it to see how a real world implementation would look like.
Just download the code and import it to Eclipse (or your favorite IDE) as a Maven project. You can execute the code by running org.example.Main.java. Remember that the important thing here is to understand how classes and interfaces are assembled together to design the pattern. I also created some fake Adaptees in the package com.thirdparty.libs. Hope it helps!
https://github.com/Dannemann/java-design-patterns
Adapter design patterns helps in converting interface of one class into interface of client expects.
Example:
You have a service which returns weather (in celsius) by passing city name as a input value. Now, assume that your client wants to pass zipcode as input and expecting the temperature of the city in return. Here you need an adaptor to achieve this.
public interface IWetherFinder {
public double getTemperature(String cityName);
}
class WeatherFinder implements IWetherFinder{
#Override
public double getTemperature(String cityName){
return 40;
}
}
interface IWeatherFinderClient
{
public double getTemperature(String zipcode);
}
public class WeatherAdapter implements IWeatherFinderClient {
#Override
public double getTemperature(String zipcode) {
//method to get cityname by zipcode
String cityName = getCityName(zipcode);
//invoke actual service
IWetherFinder wetherFinder = new WeatherFinder();
return wetherFinder.getTemperature(cityName);
}
private String getCityName(String zipCode) {
return "Banaglore";
}
}
One Real example is Qt-Dbus.
The qt-dbus has a utility to generate the adaptor and interface code from the xml file provided. Here are the steps to do so.
1. Create the xml file - this xml file should have the interfaces
that can be viewed by the qdbus-view in the system either on
the system or session bus.
2.With the utility - qdbusxml2cpp , you generate the interface adaptor code.
This interface adaptor does the demarshalling of the data that is
received from the client. After demarshalling, it invokes the
user defined - custom methods ( we can say as adaptee).
3. At the client side, we generate the interface from the xml file.
This interface is invoked by the client. The interface does the
marshalling of the data and invokes the adaptor interface. As told
in the point number 2, the adaptor interface does the demarshalling
and calls the adaptee - user defined methods.
You can see the complete example of Qt-Dbus over here -
http://www.tune2wizard.com/linux-qt-signals-and-slots-qt-d-bus/
Use Adapter when you have an interface you cannot change, but which you need to use. See it as you're the new guy in an office and you can't make the gray-hairs follow your rules - you must adapt to theirs. Here is a real example from a real project I worked on sometime where the user interface is a given.
You have an application that read all the lines in a file into a List data structure and displayed them in a grid (let's call the underlying data store interface IDataStore). The user can navigate through these data by clicking the buttons "First page", "Previous page", "Next page", "Last Page". Everything works fine.
Now the application needs to be used with production logs which are too big to read into memory but the user still needs to navigate through it! One solution would be to implement a Cache that stores the first page, next, previous and last pages. What we want is when the user clicks "Next page", we return the page from the cache and update the cache; when they click last page, we return last page from cache. In the background we have a filestream doing all the magic. By so doing we only have four pages in memory as opposed to the entire file.
You can use an adapter to add this new cache feature to your application without the user noticing it. We extend the current IDataStore and call it CacheDataStore. If the file to load is big, we use CacheDataStore. When we make a request for First, Next, Previous and Last pages, the information is routed to our Cache.
And who knows, tomorrow the boss wants to start reading the files from a database table. All you do is still extend IDataStore to SQLDataStore as you did for Cache, setup the connection in the background. When they click Next page, you generate the necessary sql query to fetch the next couple hundred rows from the database.
Essentially, the original interface of the application did not change. We simply adapted modern and cool features to work it while preserving the legacy interface.
You can find a PHP implementation of the Adapter pattern used as a defense against injection attacks here:
http://www.php5dp.com/category/design-patterns/adapter-composition/
One of the interesting aspects of the Adapter pattern is that it comes in two flavors: A class adapter relying on multiple inheritance and an object adapter relying on composition. The above example relies on composition.
#Justice o's example does not talk about adapter pattern clearly. Extending his answer -
We have existing interface IDataStore that our consumer code uses and we cannot change it. Now we are asked to use a cool new class from XYZ library that does what we want to implement, but but but, we cannot change that class to extend our IDataStore, seen the problem already ?
Creating a new class - ADAPTER, that implements interface our consumer code expects, i.e. IDataStore and by using class from the library whose features we need to have - ADAPTEE, as a member in our ADAPTER, we can achieve what we wanted to.
As per “C# 3.0 Design Patterns” book by Judith Bishop, Apple used Adapter pattern to adapt Mac OS to work with Intel products (explained in Chapter # 4, excerpt here2)
C# 3.0 Design Patterns
Structural Patterns: Adapter and Façade
An example from Yii framework would be: Yii uses internally cache utilizing an interface
ICache.
https://www.yiiframework.com/doc/api/1.1/ICache
whose signature is like : -
abstract public boolean set(string $id, mixed $value, integer $expire=0, ICacheDependency $dependency=NULL)
abstract public mixed get(string $id)
Let's say, you would like to use inside a Yii project the symfony cache library
https://packagist.org/packages/symfony/cache with it's cache interface, by defining this service in Yii services components (service locator) configuration
https://github.com/symfony/cache-contracts/blob/master/CacheInterface.php
public function get(string $key, callable $callback, float $beta = null, array &$metadata = null);
We see, symfony cache has an interface with only a get method, missing a set method and a different signature for a get method, as Symfony uses the get method also as a setter when supplying the second callable parameter.
As Yii core internally uses this Yii cache/interface, it's difficult (extending Yii/YiiBase) if not impossible at places , to rewrite the calls to that interface.
Plus Symfony cache is nor our class, so we can't rewrite it's interface to fit with the Yii cache interface.
So here comes the adapter pattern to rescue. We will write a mapping = an intermediate adapter which will map the Yii cache interface calls to Symfony cache interface
Would look like this
class YiiToSymfonyCacheAdapter implements \Yii\system\caching\ICache
{
private \Symfony\Contracts\Cache\CacheInterface $symfonyCache;
public function __construct(\Symfony\Contracts\Cache\CacheInterface $symfonyCache)
{
$this->symfonyCache = $symfonyCache;
}
public boolean set(string $id, mixed $value, integer $expire=0, ICacheDependency
$dependency=NULL)
{
// https://symfony.com/doc/current/cache.html
return $this->symfonyCache->get(
$id,
function($item) {
// some logic ..
return $value;
}
);
// https://github.com/symfony/cache/blob/master/Adapter/MemcachedAdapter.php
// if a class could be called statically, the adapter could call statically also eg. like this
// return \Symfony\Component\Cache\Adapter\MemcacheAdapter::get(
// $id,
// function($item) {
// // some logic ..
// return $value;
// }
);
}
public mixed get(string $id)
{
// https://github.com/symfony/cache/blob/master/Adapter/FilesystemAdapter.php
// if a class could be called statically, the adapter could call statically also eg. like this
// \Symfony\Component\Cache\Adapter\FileSystemAdapter::get($id)
return $this->symfonyCache->get($id)
}
}
A real example can be reporting documents in an application. Simple code as here.
Adapters i think are very useful for programming structure.
class WordAdaptee implements IReport{
public void report(String s) {
System.out.println(s +" Word");
}
}
class ExcellAdaptee implements IReport{
public void report(String s) {
System.out.println(s +" Excel");
}
}
class ReportAdapter implements IReport{
WordAdaptee wordAdaptee=new WordAdaptee();
#Override
public void report(String s) {
wordAdaptee.report(s);
}
}
interface IReport {
public void report(String s);
}
public class Main {
public static void main(String[] args) {
//create the interface that client wants
IReport iReport=new ReportAdapter();
//we want to write a report both from excel and world
iReport.report("Trial report1 with one adaptee"); //we can directly write the report if one adaptee is avaliable
//assume there are N adaptees so it is like in our example
IReport[] iReport2={new ExcellAdaptee(),new WordAdaptee()};
//here we can use Polymorphism here
for (int i = 0; i < iReport2.length; i++) {
iReport2[i].report("Trial report 2");
}
}
}
Results will be:
Trial report1 with one adaptee Word
Trial report 2 Excel
Trial report 2 Word
This is an example of adapter implementation:
interface NokiaInterface {
chargementNokia(x:boolean):void
}
class SamsungAdapter implements NokiaInterface {
//nokia chargement adapted to samsung
chargementNokia(x:boolean){
const old= new SamsungCharger();
let y:number = x ? 20 : 1;
old.charge(y);
}
}
class SamsungCharger {
charge(x:number){
console.log("chrgement x ==>", x);
}
}
function main() {
//charge samsung with nokia charger
const adapter = new SamsungAdapter();
adapter.chargementNokia(true);
}
So I've been learning about the Repository model, and it seems that it is expected that Repositories do not do a lot of intricate logic. However I also read that most of the business logic should not be inside of my Controllers. So where do I put it?
I've looked at some sample applications and it seems that they have another layer called Services that do more intricate logic for things. So how does this factor into the MVC pattern?
Do I want to build my services to access my repositories, and then my controllers to access my services? Like this?
interface IMembershipService
{
bool ValidateUser(string username, string password);
MembershipCreateStatus Create(string username, string password);
}
interface IMembershipRepository
{
MembershipCreateStatus Create(string username, string password);
}
class MembershipRepository : IMembershipRepository
{
public MembershipRepository(ISession session)
{
**// this is where I am confused...**
}
}
class MembershipService : IMembershipService
{
private readonly IMembershipRepository membershipRepository;
public MembershipService(IMembershipRepository membershipRepository)
{
this.membershipRepository = membershipRepository;
}
public bool ValidateUser(string username, string password)
{
// validation logic
}
public MembershipCreateStatus Create(string username, string password)
{
return membershipRepository.Create(username, password);
}
}
class MembershipController : Controller
{
private readonly IMembershipService membershipService;
public MembershipController(IMembershipService membershipService)
{
this.membershipService = membershipService
}
}
The marked part of my code is what confuses me. Everything I have read said I should be injecting my ISession into my repositories. This means I could not be injecting ISession into my services, so then how do I do Database access from my Services? I'm not understanding what the appropriate process is here.
When I put ValidateUser in my IMembershipRepository, I was told that was 'bad'. But the IMembershipRepository is where the database access resides. That's the intention, right? To keep the database access very minimal? But if I can't put other logic in them, then what is the point?
Can someone shed some light on this, and show me an example that might be more viable?
I am using Fluent nHibernate, ASP.NET MVC 3.0, and Castle.Windsor.
Should I instead do something like ...
class MembershipService
{
private readonly IMembershipRepository membershipRepository;
public MembershipService(ISession session)
{
membershipRepository = new MembershipRepository(session);
}
}
And never give my Controllers direct access to the Repositories?
Everything I have read said I should be injecting my ISession into my repositories.
That's correct. You need to inject the session into the repository constructor because this is where the data access is made.
This means I could not be injecting ISession into my services, so then how do I do Database access from my Services?
You don't do database access in your services. The service relies on one or more repositories injected into its constructor and uses their respective methods. The service never directly queries the database.
So to recap:
The repository contains the simple CRUD operations on your model. This is where the data access is performed. This data access doesn't necessary mean database. It will depend on the underlying storage you are using. For example you could be calling some remote services on the cloud to perform the data access.
The service relies on one or more repositories to implement a business operation. This business operation might depend on one or more CRUD operations on the repositories. A service shouldn't even know about the existence of a database.
The controller uses the service to invoke the business operation.
In order to decrease the coupling between the different layers, interfaces are used to abstract the operations.
interface IMembershipService
{
bool ValidateUser(string username, string password);
MembershipCreateStatus Create(string username, string password);
}
Creating a service like this an anti-pattern.
How many responsibilities does a service like this have? How many reasons could it have to change?
Also, if you put your logic into services, you are going to end up with an anemic domain. What you will end up with is procedural code in a Transaction Script style. And I am not saying this is necessarily bad.
Perhaps a rich domain model is not appropriate for you, but it should be a conscious decision between the two, and this multiple responsibility service is not appropriate in either case.
This should be a HUGE red flag:
public MembershipCreateStatus Create(string username, string password)
{
return membershipRepository.Create(username, password);
}
What is the point? Layers for the sake of layers? The Service adds no value here, serves no purpose.
There are a lot of concepts missing.
First, consider using a Factory for creating objects:
public interface IMembershipFactory {
MembershipCreateStatus Create(string username, string password);
}
The factory can encapsulate any logic that goes into building an instance or beginning the lifetime of an entity object.
Second, Repositories are an abstraction of a collection of objects. Once you've used a factory to create an object, add it to the collection of objects.
var result = _membershipFactory.Create("user", "pw");
if (result.Failed); // do stuff
_membershipRepository.Add(status.NewMembership); // assumes your status includes the newly created object
Lastly, MyEntityService class that contains a method for every operation that can be performed on an Entity just seems terribly offensive to my senses.
Instead, I try to be more explicit and better capture intent by modeling each operation not as a method on a single Service class, but as individual Command classes.
public class ChangePasswordCommand {
public Guid MembershipId { get; set; }
public string CurrentPassword { get; set; }
public string NewPassword { get; set; }
}
Then, something has to actually do something when this command is sent, so we use handlers:
public interface IHandle<TMessageType> {
void Execute(TMessageType message);
}
public class ChangePasswordCommandHandler : IHandle<ChangePasswordCommand> {
public ChangePasswordCommandHandler(
IMembershipRepository repo
)
{}
public void Execute(ChangePasswordCommand command) {
var membership = repo.Get(command.MembershipId);
membership.ChangePassword(command.NewPassword);
}
}
Commands are dispatched using a simple class that interfaces with our IoC container.
This helps avoids monolithic service classes and makes a project's structure and location of logic much clearer.