How to chain lambdas to a resulting lambda in Kotlin? - kotlin

... or the equivalent of java.util.Function.andThen()
In Java
Function<String, String> add1 = string -> string + "1";
Function<String, String> add2 = string -> string + "2";
Function<String, Strint> add12 = add1.andThen(add2);
add12.apply("") returns "12"
How would I write it in Kotlin?
val add1 = { string:String -> string + "1" }
val add2 = { string:String -> string + "2" }
val add12 = ?

The feature you're looking for is called function composition. As far as I can tell, it doesn't come built-in to Kotlin (would love to be corrected on this). But it's very easy to write as an extension function.
infix fun<A, B, C> ((B) -> C).compose(that: (A) -> B): (A) -> C =
{ this(that(it)) }
Now we can write
val add1 = { string:String -> string + "1" }
val add2 = { string:String -> string + "2" }
println((add2 compose add1)("3")) // Prints "312"
I write compose to use right-to-left composition, more in line with the way mathematical functions work.

Granted, this is not exactly what you're looking for, because you can't store a composed function this way in a variable, but you can chain the results of functions using run if the functions themselves don't have the parameter as a receiver:
fun print(string: String) {
println(add1(string).run(add2))
}
// or
fun print(string: String) {
println(string.run(add1).run(add2))
}
Since run is an inline function, it doesn't add a wrapper object around each function.
The let function will have the exact same effect. This is because when you pass something other than a lambda to a higher order function, it doesn't matter if the first parameter is a receiver or not. They are treated as the same signature.

If you are that familiar with Java functions and/or want to use them, you are still open to do that (using java.util.function.Function):
val add1 : Function<String, String> = Function { "${it}1"}
val add2 : Function<String, String> = Function { "${it}2"}
val add12: Function<String, String> = add1.andThen(add2)
If I wanted to have something similar in Kotlin, I would probably just go for what also Tenfour04 showed, i.e. use either let or run:
val add1 : (String) -> String = { "${it}1"}
val add2 : (String) -> String = { "${it}2"}
val add12 : (String) -> String = { it.let(add1).let(add2) } // or: { add1(it).let(add2) }
If you compare the two you only spare something, if you omit the type, but it's still clear enough what gets composed.
Of course you can implement your own compose or andThen-functions. However, if you don't mind using an additional library, you may rather be interested in Arrow where lots of functional use-cases are already supported.

Related

Mapping array elements using a function in Kotlin

New to Kotlin from Python. In Python, I can simply use the code below to pass each element of a List to a multiline function and return an iterator of the result.
countArr = list(map(countReps, arr))
In Kotlin, I found that I had to do the following. Am I missing something?
fun LetterCountI(str: String): String {
val arr = str.split(" ")
var transform:(String) -> Int = {countReps(it)}
val countArr = arr.map(transform)
val mxIndex:Int
var ans:String
if (countArr.max()!=1){
mxIndex = countArr.indexOf(countArr.max())
ans = arr[mxIndex]
} else {
ans = "-1"
}
return ans;
}
fun countReps(str: String): Int {
var m = mutableMapOf<Char, Int>()
var v:Int
for (c in str){
if (c in m.keys){
v = m[c]?:0
m.put(c,v+1)
} else {
m.put(c,1)
}
}
return m.values.max() ?: 0
}```
I'm having a bit of a hard time understanding your code, but one thing I can tell you is that you can replace
var transform:(String) -> Int = {countReps(it)}
val countArr = arr.map(transform)
with
val countArr = arr.map(::countReps)
In addition to the line you ask about, just about all of that code could be rewritten more concisely and idiomatically in Kotlin. For example:
fun String.wordWithMostRepeatedLetters()
= split(" ")
.associateWith{ it.maxRepeatedLetters() }
.filter{ it.value > 1 }
.maxByOrNull{ it.value }?.key ?: "-1"
fun String.maxRepeatedLetters()
= groupBy{ it }.map{ it.value.size }.maxOrNull() ?: 0
I've renamed the functions to try to explain what they give; replaced the countArr list with a map from each word to its count, so that you don't need to re-scan it to find the word resulting; and changed both functions to take a String receiver instead of a parameter. Then, because each variable was only used once, I removed them and made it all in-line, using an expression body for each function.
Some of those things don't always improve clarity, of course, especially for long functions — but I hope it demonstrates how concise Kotlin can be. (Hopefully without sacrificing maintainability. Which version would be easier to read? Which would be more likely to harbour subtle bugs?)
It's still not clear what the hard-coded "-1" return value indicates, though… If no word has any repeated letters, a null return would be more idiomatic. (Or it would be simpler just to return the first word, removing the filter() call, and returning null only if the string is blank.)

Kotlin combine lists based on common property

I have two functions (GetPodsOne and GetPodsTwo) that return me a big csv string. I then do some processing to discard the part of the string I don't want. See snippet below.
var podValues = execGetPodsOne()
val testPodValuesLst: List<String> = podValues.split(",").map { it -> it.substringAfterLast("/") }
testPodValuesLst.forEach { it ->
 println("value from testPodList=$it")
 }
podValues = execGetPodsTwo()
val sitPodValuesLst: List<String> = podValues.split(",").map { it -> it.substringAfterLast("/") }
sitPodValuesLst.forEach { it ->
 println("value from sitPodList=$it")
 }
This leaves me with two lists. See output of the above below:
value from testPodList=api-car-v1:0.0.118
value from testPodList=api-dog-v1:0.0.11
value from testPodList=api-plane-v1:0.0.36
value from sitPodList=api-car-v1:0.0.119
value from sitPodList=api-dog-v1:0.0.12
value from sitPodList=api-plane-v1:0.0.37
What i would like to do is end up with the objects inside a data class like below:
data class ImageVersions(val apiName: String, val testPodVersion: String, val sitPodVersion: String)
api-car-v1, 0.0.118, 0.0.119
api-dog-v1, 0.0.11, 0.0.12
api-plane-v1, 0.0.36, 0.0.37
I've used test and sit above but I'm going to have maybe another 5 environments eventually. Looking for a nice way to get the versions for each api and easily combine into that ImageVersions data class.
thanks
Considering that you're going to have maybe another 5 environments eventually, I tried to write something that will scale well:
enum class Env { Test, Sit }
data class ImageVersions(val apiName: String, val versions: Map<Env, String?>)
fun String.getNameAndVersion() = substringBefore(':') to substringAfter(':')
fun getVersions(envMap: Map<Env, List<String>>): List<ImageVersions> {
val envApiNameMap = envMap.mapValues { it.value.associate(String::getNameAndVersion) }
val allApiNames = envApiNameMap.flatMap { it.value.keys }.distinct()
return allApiNames.map { apiName ->
ImageVersions(apiName, envApiNameMap.mapValues { it.value[apiName] })
}
}
Playground example
So instead of separate val testPodVersion: String, val sitPodVersion: String, here you have a map. Now the structure of ImageVersions always remains the same irrespective of how many environments you have.
getNameAndVersion is a helper function to extract apiName and version from the original string.
getVersions accepts a list of versions corresponding to each environment and returns a list of ImageVersions
envApiNameMap is same as envMap just that the list is now a map of apiName and its version.
allApiNames contains all the available apiNames from all environments.
Then for every apiName, we take all the versions of that apiName from all the environments.
In future, if your have another environment, just add it in the Env enum and pass an extra map entry in the envMap of getVersions. You need not modify this function every time you have a new environment.
How about this:
val testPodValuesMap = testPodValuesLst.associate { it.split(':').zipWithNext().single() }
val sitPodValuesMap = sitPodValuesLst.associate { it.split(':').zipWithNext().single() }
val mergedMap = (testPodValuesMap.keys + sitPodValuesMap.keys).associateWith { key ->
testPodValuesMap.getValue(key) to sitPodValuesMap.getValue(key)
}
val imageVersions = mergedMap.map { (k, v) -> ImageVersions(k, v.first, v.second) }
println(imageVersions.joinToString("\n"))
which prints
ImageVersions(apiName=api-car-v1, testPodVersion=0.0.118, sitPodVersion=0.0.119)
ImageVersions(apiName=api-dog-v1, testPodVersion=0.0.11, sitPodVersion=0.0.12)
ImageVersions(apiName=api-plane-v1, testPodVersion=0.0.36, sitPodVersion=0.0.37)
As a first step I would extract the apiNames from both lists:
val apiNames = list1.map { it.replace("value from ", "").split("[=:]".toRegex())[1] }
.plus(list2.map { it.replace("value from ", "").split("[=:]".toRegex())[1] })
.distinct()
Then I'd create the ImageVersions instances by looping over apiNames:
val result = apiNames
.map { apiName ->
ImageVersions(
apiName,
(list1.firstOrNull { it.contains(apiName) } ?: "").split(":")[1],
(list2.firstOrNull { it.contains(apiName) } ?: "").split(":")[1]
)
}
.toList()
The reason to first extract the apiNames is, that apiNames missing in one of the two lists will still end up in the final result.
Kotlin Playground

Kotlin: How to specify a named arguent with a variable?

Suppose I have two methods:
private fun method1(a: A): A {
return a.copy(v1 = null)
}
private fun method2(a: A): A {
return a.copy(v2 = null)
}
Can I write something like:
private fun commonMethod(a: A, variableToChange: String): A {
return a.copy($variableToChange = null)
}
Another words, can I use a variable to refer to a named argument?
If I understand correctly what you are trying to archive I would recommend to pass a setter to the method e.g.
fun <A> changer (a: A, setter: (a: A) -> Unit ) {
// do stuff
setter(a)
}
Is this what you are looking for?
A possible solution for this problem (with usage of reflection) is:
inline fun <reified T : Any> copyValues(a: T, values: Map<String, Any?>): T {
val function = a::class.functions.first { it.name == "copy" }
val parameters = function.parameters
return function.callBy(
values.map { (parameterName, value) ->
parameters.first { it.name == parameterName } to value
}.toMap() + (parameters.first() to a)
) as T
}
This works with all data classes and all classes that have a custom copy function with the same semantics (as long as the parameter names are not erased while compiling). In the first step the function reference of the copy method is searched (KFunction<*>). This object has two importent properties. The parameters property and the callBy function.
With the callBy function you can execute all function references with a map for the parameters. This map must contain a reference to the receiver object.
The parameters propery contains a collection of KProperty. They are needed as keys for the callBy map. The name can be used to find the right KProperty. If a function as a parameter that is not given in the map it uses the default value if available or throws an exception.
Be aware that this solution requires the full reflection library and therefore only works with Kotlin-JVM. It also ignores typechecking for the parameters and can easily lead to runtime exceptions.
You can use it like:
data class Person (
val name: String,
val age: Int,
val foo: Boolean
)
fun main() {
var p = Person("Bob", 18, false)
println(p)
p = copyValues(p, mapOf(
"name" to "Max",
"age" to 35,
"foo" to true
))
println(p)
}
// Person(name=Name, age=15, foo=false)
// Person(name=Max, age=35, foo=true)

how to convert a String sentence to arraylist in Kotlin

I have this function to convert string sentence to list words. I created this function in Java and converted to Kotlin using default Kotlin conversion in Android Studio, but I believe there can be many ways to shorten this code in Awesome Kotlin. I will be good if you can share your piece of code and help me(and all) to improve our knowledge in Kotlin.
private fun stringToWords(mnemonic: String): List<String> {
val words = ArrayList<String>()
for (word in mnemonic.trim { it <= ' ' }.split(" ".toRegex()).dropLastWhile { it.isEmpty() }.toTypedArray()) {
if (word.isNotEmpty()) {
words.add(word)
}
}
return words
}
I would go for the following:
fun stringToWords(s : String) = s.trim().splitToSequence(' ')
.filter { it.isNotEmpty() } // or: .filter { it.isNotBlank() }
.toList()
Note that you probably want to adjust that filter, e.g. to filter out blank entries too... I put that variant in the comment... (if you use that one, you do not require an initial trim() though)
If you rather want to work with the Sequence you can do so by just omitting the .toList() at the end.
And as also Abdul-Aziz-Niazi said: same is also possible via extension function, if you require it more often:
fun String.toWords() = trim().splitToSequence(' ').filter { it.isNotEmpty() }.toList()
You can do it like this.. Just make a function of return type list.
val s = "This is a sample sentence."
val words:Array<String> = s.split("\\s+".toRegex()).dropLastWhile { it.isEmpty() }.toTypedArray()
for (i in words.indices) {
// You may want to check for a non-word character before blindly
// performing a replacement
// It may also be necessary to adjust the character class
words[i] = words[i].replace("[^\\w]".toRegex(), "")
}
May this will help you :-)
It's easier than you think:
fun stringToWords(mnemonic: String) = mnemonic.replace("\\s+".toRegex(), " ").trim().split(" ")
Remove multiple spaces, trim start and the end, split.
Like an extention:
fun String.toWords() = replace("\\s+".toRegex(), " ").trim().split(" ")
After Roland's suggestion:
fun String.toWords() = trim().split("\\s+".toRegex())
You don't need scopes, the redundant "".toRegex() and the last expression.
You can do something like this:
private fun stringToWords(mnemonic: String): List<String> {
val words = ArrayList<String>()
for (w in mnemonic.trim(' ').split(" ")) {
if (w.isNotEmpty()) {
words.add(w)
}
}
return words
}
Additionally,
If you use this method a lot in this project, you can make it an extension in string class. Paste this method in a separate file(outside a classes or add it in classless .kt file) so it has a global access.
and then you can use it with any string like
myString.toWords() anywhere in the project
The method will look like this
inline fun String.toWords(): List<String> {
val words = ArrayList<String>()
for (w in this.trim(' ').split(" ")) {
if (w.isNotEmpty()) {
words.add(w)
}
}
return words
}

Kotlin DSL - union structure

I am designing a DSL and run into a requirement where I have a variable which could be assigned to different ways. Greatly simplified, I would like to set value property either by an integer or by an expression in String. (The real need is even more complex.)
I would like to write in my DSL:
value = 42
or
value = "6*7"
Behind the scene, the value will be stored in a DynamicValue<Int> structure which contains either an integer or the expression.
class DynamicValue<T>(dv : T?, expr : String) {
val directValue : T? = dv
val script : String? = expr
...
}
I tried several ways (delegate, class, etc), but none of them provided these syntax.
Is there a way to declare this union like structure?
What do you think about the following syntax:
value(42)
value("6*7")
//or
value+=42
value+="6*7"
You can do this with operator functions:
class DynamicValue<T>() {
var dv: T? = null
var expr: String? = null
operator fun invoke(dv : T) {
this.dv = dv
this.expr = null
}
operator fun invoke(expr: String) {
this.dv = null
this.expr = expr
}
operator fun plusAssign(dv : T) {
this.dv = dv
this.expr = null
}
operator fun plusAssign(expr: String) {
this.dv = null
this.expr = expr
}
}
You can't redefine the assign operator in Kotlin, therefor the pure syntax value=42 is not possible.
But I wouldn't go with operator functions, it's to magical. I would do this:
val value = DynamicValue<Int>()
value.simple=42
value.expr="6*7"
class DynamicValue2<T>() {
private var _dv: T? = null
private var _expr: String? = null
var simple: T?
get() = _dv
set(value) {
_dv = value
_expr = null
}
var expr: String?
get() = _expr
set(value) {
_expr = value
_dv = null
}
}
Rene's answer gave me the lead and finally I turned up with this solution.
In this solution I took all my requirements in (the ones I dropped out in my original question) so this became much more complicated than my original question would have required.
My whole requirement was to be able to add static values or scripts (snippets) running on a well guarded context. These script would be stored, and executed later. I wanted to enable the whole power of the IDE when writing the script, but would like to guard my scripts from code injections and help the user to use only the context values the script requires.
The trick I used to achieve this is to enable adding script in kotlin, but before I run the whole DSL script and create the business objects, I convert the script into a string. (This string will be executed later in a guarded, wrapped context by JSR233 engine.) This conversation forced me to tokenize the whole script before execution and search/replace some of the tokens. (The whole tokenizer and converter is rather long and boring, so I won't insert here.)
First approach
What my goal was to be able to write any of this:
myobject {
value = static { 42 } // A static solution
value = static { 6 * 7 } // Even this is possible
value = dynamic{ calc(x, y) } // A pure cotlin solution with IDE support
value = dynamic("""calc(x * x)""") // This is the form I convert the above script to
}
where calc, x and y are defined in the context class:
class SpecialScriptContext : ScriptContextBase() {
val hello = "Hello"
val x = 29
val y = 13
fun calc(x: Int, y: Int) = x + y
fun greet(name: String) = println("$hello $name!")
}
So let's see the solution! First I need a DynamicValue class to hold one of the values:
class DynamicValue<T, C : ScriptContextBase, D: ScriptContextDescriptor<C>>
private constructor(val directValue: T?, val script: String?) {
constructor(value: T?) : this(value, null)
constructor(script: String) : this(null, script)
}
This structure will ensure that exactly one of the options (static, script) will be set. (Don't bother with the C and D type parameters, they are for context-based script support.)
Then I made top level DSL functions to support syntax:
#PlsDsl
fun <T, C : ScriptContextBase, D : ScriptContextDescriptor<C>> static(block: () -> T): DynamicValue<T, C, D>
= DynamicValue<T, C, D>(value = block.invoke())
#PlsDsl
fun <T, C : ScriptContextBase, D : ScriptContextDescriptor<C>> dynamic(s: String): DynamicValue<T, C, D>
= DynamicValue<T, C, D>(script = s)
#PlsDsl
fun <T, C : ScriptContextBase, D : ScriptContextDescriptor<C>> dynamic(block: C.() -> T): DynamicValue<T, C, D> {
throw IllegalStateException("Can't use this format")
}
An explanation to the third form. As I wrote before, I don't want to execute the block of the function. When the script is executed, this form is converted to the string form, so normally this function would never appear in the script when executed. The exception is a sanity warning, which would never be thrown.
Finally added the field to my business object builder:
#PlsDsl
class MyObjectBuilder {
var value: DynamicValue<Int, SpecialScriptContext, SpecialScriptContextDescriptor>? = null
}
Second approach
The previous solution worked but had some flaws: the expression was not associated with the variable it set, neither with the entity the value was set in. With my second approach I solved this problem and removed the need of equal sign and most of the unnecessary curly brackets.
What helped: extension functions, infix functions and sealed classes.
First, I split the two value types into separated classes defined a common ancestor:
sealed class Value<T, C : ScriptContextBase> {
abstract val scriptExecutor: ScriptExecutor
abstract val descriptor: ScriptContextDescriptor<C>
abstract val code: String
abstract fun get(context: C): T?
}
class StaticValue<T, C : ScriptContextBase>(override val code: String,
override val scriptExecutor: ScriptExecutor,
override val descriptor: ScriptContextDescriptor<C>,
val value: T? = null
) : Value<T, C>() {
override fun get(context: C) = value
constructor(oldValue: Value<T, C>, value: T?) : this(oldValue.code, oldValue.scriptExecutor, oldValue.descriptor, value)
}
class DynamicValue<T, C : ScriptContextBase>(override val code: String,
script: String,
override val scriptExecutor: ScriptExecutor,
override val descriptor: ScriptContextDescriptor<C>)
: Value<T, C>() {
constructor(oldValue: Value<T, C>, script: String) : this(oldValue.code, script, oldValue.scriptExecutor, oldValue.descriptor)
private val scriptCache = scriptExecutor.register(descriptor)
val source = script?.replace("\\\"\\\"\\\"", "\"\"\"")
private val compiledScript = scriptCache.register(generateUniqueId(code), source)
override fun get(context: C): T? = compiledScript.execute<T?>(context)
}
Note, that I made the primary constructor internal and created a kind of copy and alter constructor. Then I defined the new functions as extension of the common ancestor and marked them infix:
infix fun <T, C : ScriptContextBase> Value<T, C>.static(value: T?): Value<T, C> = StaticValue(this, value)
infix fun <T, C : ScriptContextBase> Value<T, C>.expr(script: String): Value<T, C> = DynamicValue(this, script)
infix fun <T, C : ScriptContextBase> Value<T, C>.dynamic(block: C.() -> T): Value<T, C> {
throw IllegalStateException("Can't use this format")
}
Using the secondary copy-and-alter constructor allows to inherit the context sensitive values. Finally I initialize the value inside the DSL builder:
#PlsDsl
class MyDslBuilder {
var value: Value<Int, SpecialScriptContext> = StaticValue("pl.value", scriptExecutor, SpecialScriptContextDescriptor)
var value2: Value<Int, SpecialScriptContext> = StaticValue("pl.value2", scriptExecutor, SpecialScriptContextDescriptor)
}
Everything is in place and now I can use it in my script:
myobject {
value static 42
value2 expr "6 * 7"
value2 dynamic { calc(x, y) }
}