Kotlin: How to specify a named arguent with a variable? - kotlin

Suppose I have two methods:
private fun method1(a: A): A {
return a.copy(v1 = null)
}
private fun method2(a: A): A {
return a.copy(v2 = null)
}
Can I write something like:
private fun commonMethod(a: A, variableToChange: String): A {
return a.copy($variableToChange = null)
}
Another words, can I use a variable to refer to a named argument?

If I understand correctly what you are trying to archive I would recommend to pass a setter to the method e.g.
fun <A> changer (a: A, setter: (a: A) -> Unit ) {
// do stuff
setter(a)
}
Is this what you are looking for?

A possible solution for this problem (with usage of reflection) is:
inline fun <reified T : Any> copyValues(a: T, values: Map<String, Any?>): T {
val function = a::class.functions.first { it.name == "copy" }
val parameters = function.parameters
return function.callBy(
values.map { (parameterName, value) ->
parameters.first { it.name == parameterName } to value
}.toMap() + (parameters.first() to a)
) as T
}
This works with all data classes and all classes that have a custom copy function with the same semantics (as long as the parameter names are not erased while compiling). In the first step the function reference of the copy method is searched (KFunction<*>). This object has two importent properties. The parameters property and the callBy function.
With the callBy function you can execute all function references with a map for the parameters. This map must contain a reference to the receiver object.
The parameters propery contains a collection of KProperty. They are needed as keys for the callBy map. The name can be used to find the right KProperty. If a function as a parameter that is not given in the map it uses the default value if available or throws an exception.
Be aware that this solution requires the full reflection library and therefore only works with Kotlin-JVM. It also ignores typechecking for the parameters and can easily lead to runtime exceptions.
You can use it like:
data class Person (
val name: String,
val age: Int,
val foo: Boolean
)
fun main() {
var p = Person("Bob", 18, false)
println(p)
p = copyValues(p, mapOf(
"name" to "Max",
"age" to 35,
"foo" to true
))
println(p)
}
// Person(name=Name, age=15, foo=false)
// Person(name=Max, age=35, foo=true)

Related

What is the type of a Kotlin 'data class'?

I have a situation where I need to create a copy of data class object. I don't know in advance which of the many data classes I have will come in into the function. I do know, however, that only data classes will be used as input to this function.
This is what didn't work:
fun doSomething(obj: Any): Any {
obj.copy(...) // <- there's no 'copy' on Any
...
}
This is what I really like to do:
fun doSomething(obj: KAnyDataClass): KAnyDataClass {
obj.copy(...) // <- works, data classes have a 'copy' method
...
}
I'm not a Kotlin developer, but it looks like the language does not support dynamic dispatch or traits. You might find success with the dynamic type, which just turns off the type-checker so it won't yell at you for using a method that it doesn't know about. However this opens up the possibility of a runtime error if you pass an argument that actually doesn't have that method.
There is no class or interface for data classes, but we know from the documentation of data classes that there are derived functions componentN and copy in each data class.
We can use that knowledge to write an abstract copy method that calls the copy method of a given arbitrary data class using reflection:
fun <T : Any> copy(data: T, vararg override: Pair<Int, Any?>): T {
val kClass = data::class
if (!kClass.isData) error("expected a data class")
val copyFun = kClass.functions.first { it.name == "copy" }
checkParameters(override, kClass)
val vals = determineComponentValues(copyFun, kClass, override, data)
#Suppress("UNCHECKED_CAST")
return copyFun.call(data, *vals) as T
}
/** check if override of parameter has the right type and nullability */
private fun <T : Any> checkParameters(
override: Array<out Pair<Int, Any?>>,
kClass: KClass<out T>
) {
override.forEach { (index, value) ->
val expectedType = kClass.functions.first { it.name == "component${index + 1}" }.returnType
if (value == null) {
if (!kClass.functions.first { it.name == "component${index + 1}" }.returnType.isMarkedNullable) {
error("value for parameter $index is null but parameter is not nullable")
}
} else {
if (!expectedType.jvmErasure.isSuperclassOf(value::class))
error("wrong type for parameter $index: expected $expectedType but was ${value::class}")
}
}
}
/** determine for each componentN the value from override or data element */
private fun <T : Any> determineComponentValues(
copyFun: KFunction<*>,
kClass: KClass<out T>,
override: Array<out Pair<Int, Any?>>,
data: T
): Array<Any?> {
val vals = (1 until copyFun.parameters.size)
.map { "component$it" }
.map { name -> kClass.functions.first { it.name == name } }
.mapIndexed { index, component ->
override.find { it.first == index }.let { if (it !== null) it.second else component.call(data) }
}
.toTypedArray()
return vals
}
Since this copy function is generic and not for a specific data class, it is not possible to specify overloads in the usual way, but I tried to support it in another way.
Let's say we have a data class and element
data class Example(
val a: Int,
val b: String,
)
val example: Any = Example(1, "x")
We can create a copy of example with copy(example) that has the same elements as the original.
If we want to override the first element, we cannot write copy(example, a = 2), but we can write copy(example, 0 to 2), saying that we want to override the first component with value 2.
Analogously we can write copy(example, 0 to 3, 1 to "y") to specify that we want to change the first and the second component.
I am not sure if this works for all cases since I just wrote it, but it should be a good start to work with.

How do I create an enum from an Int in Kotlin?

I have this enum:
enum class Types(val value: Int) {
FOO(1)
BAR(2)
FOO_BAR(3)
}
How do I create an instance of that enum using an Int?
I tried doing something like this:
val type = Types.valueOf(1)
And I get the error:
Integer literal does not conform to the expected type String
enum class Types(val value: Int) {
FOO(1),
BAR(2),
FOO_BAR(3);
companion object {
fun fromInt(value: Int) = Types.values().first { it.value == value }
}
}
You may want to add a safety check for the range and return null.
Enum#valueOf is based on name. Which means in order to use that, you'd need to use valueof("FOO"). The valueof method consequently takes a String, which explains the error. A String isn't an Int, and types matter. The reason I mentioned what it does too, is so you know this isn't the method you're looking for.
If you want to grab one based on an int value, you need to define your own function to do so. You can get the values in an enum using values(), which returns an Array<Types> in this case. You can use firstOrNull as a safe approach, or first if you prefer an exception over null.
So add a companion object (which are static relative to the enum, so you can call Types.getByValue(1234) (Types.COMPANION.getByValue(1234) from Java) over Types.FOO.getByValue(1234).
companion object {
private val VALUES = values()
fun getByValue(value: Int) = VALUES.firstOrNull { it.value == value }
}
values() returns a new Array every time it's called, which means you should cache it locally to avoid re-creating one every single time you call getByValue. If you call values() when the method is called, you risk re-creating it repeatedly (depending on how many times you actually call it though), which is a waste of memory.
Admittedly, and as discussed in the comments, this may be an insignificant optimization, depending on your use. This means you can also do:
companion object {
fun getByValue(value: Int) = values().firstOrNull { it.value == value }
}
if that's something you'd prefer for readability or some other reason.
The function could also be expanded and check based on multiple parameters, if that's something you want to do. These types of functions aren't limited to one argument.
If you are using integer value only to maintain order, which you need to access correct value, then you don't need any extra code. You can use build in value ordinal. Ordinal represents position of value in enum declaration.
Here is an example:
enum class Types {
FOO, //Types.FOO.ordinal == 0 also position == 0
BAR, //Types.BAR.ordinal == 1 also position == 1
FOO_BAR //Types.FOO_BAR.ordinal == 2 also position == 2
}
You can access ordinal value simply calling:
Types.FOO.ordinal
To get correct value of enum you can simply call:
Types.values()[0] //Returns FOO
Types.values()[1] //Returns BAR
Types.values()[2] //Returns FOO_BAR
Types.values() returns enum values in order accordingly to declaration.
Summary:
Types.values(Types.FOO.ordinal) == Types.FOO //This is true
If integer values don't match order (int_value != enum.ordinal) or you are using different type (string, float...), than you need to iterate and compare your custom values as it was already mentioned in this thread.
It really depends on what you actually want to do.
If you need a specific hardcoded enum value, then you can directly use Types.FOO
If you are receiving the value dynamically from somewhere else in your code, you should try to use the enum type directly in order not to have to perform this kind of conversions
If you are receiving the value from a webservice, there should be something in your deserialization tool to allow this kind of conversion (like Jackson's #JsonValue)
If you want to get the enum value based on one of its properties (like the value property here), then I'm afraid you'll have to implement your own conversion method, as #Zoe pointed out.
One way to implement this custom conversion is by adding a companion object with the conversion method:
enum class Types(val value: Int) {
FOO(1),
BAR(2),
FOO_BAR(3);
companion object {
private val types = values().associate { it.value to it }
fun findByValue(value: Int): Types? = types[value]
}
}
Companion objects in Kotlin are meant to contain members that belong to the class but that are not tied to any instance (like Java's static members).
Implementing the method there allows you to access your value by calling:
var bar = Types.findByValue(2) ?: error("No Types enum value found for 2")
Note that the returned value is nullable, to account for the possibility that no enum value corresponds to the parameter that was passed in. You can use the elvis operator ?: to handle that case with an error or a default value.
If you hate declaring for each enum type a companion object{ ... } to achieve EMotorcycleType.fromInt(...). Here's a solution for you.
EnumCaster object:
object EnumCaster {
inline fun <reified E : Enum<E>> fromInt(value: Int): E {
return enumValues<E>().first { it.toString().toInt() == value }
}
}
Enum example:
enum class EMotorcycleType(val value: Int){
Unknown(0),
Sport(1),
SportTouring(2),
Touring(3),
Naked(4),
Enduro(5),
SuperMoto(6),
Chopper(7),
CafeRacer(8),
.....
Count(9999);
override fun toString(): String = value.toString()
}
Usage example 1: Kotlin enum to jni and back
fun getType(): EMotorcycleType = EnumCaster.fromInt(nGetType())
private external fun nGetType(): Int
fun setType(type: EMotorcycleType) = nSetType(type.value)
private external fun nSetType(value: Int)
---- or ----
var type : EMotorcycleType
get() = EnumCaster.fromInt(nGetType())
set(value) = nSetType(value.value)
private external fun nGetType(): Int
private external fun nSetType(value: Int)
Usage example 2: Assign to val
val type = EnumCaster.fromInt<EMotorcycleType>(aValidTypeIntValue)
val typeTwo : EMotorcycleType = EnumCaster.fromInt(anotherValidTypeIntValue)
A naive way can be:
enum class Types(val value: Int) {
FOO(1),
BAR(2),
FOO_BAR(3);
companion object {
fun valueOf(value: Int) = Types.values().find { it.value == value }
}
}
Then you can use
var bar = Types.valueOf(2)
Protocol orientated way with type-safety
interface RawRepresentable<T> {
val rawValue: T
}
inline fun <reified E, T> valueOf(value: T): E? where E : Enum<E>, E: RawRepresentable<T> {
return enumValues<E>().firstOrNull { it.rawValue == value }
}
enum class Types(override val rawValue: Int): RawRepresentable<Int> {
FOO(1),
BAR(2),
FOO_BAR(3);
}
Usage
val type = valueOf<Type>(2) // BAR(2)
You can use it on non-integer type, too.
I would build the 'reverse' map ahead of time. Probably not a big improvement, but also not much code.
enum class Test(val value: Int) {
A(1),
B(2);
companion object {
val reverseValues: Map<Int, Test> = values().associate { it.value to it }
fun valueFrom(i: Int): Test = reverseValues[i]!!
}
}
Edit: map...toMap() changed to associate per #hotkey's suggestion.
try this...
companion object{
fun FromInt(v:Int):Type{
return Type::class.java.constructors[0].newInstance(v) as Type
}
}
This is for anyone looking for getting the enum from its ordinal or index integer.
enum class MyEnum { RED, GREEN, BLUE }
MyEnum.values()[1] // GREEN
Another solution and its variations:
inline fun <reified T : Enum<T>> enumFromIndex(i: Int) = enumValues<T>()[i]
enumFromIndex<MyEnum>(1) // GREEN
inline fun <reified T : Enum<T>> enumFromIndex(i: Int) = enumValues<T>().getOrNull(i)
enumFromIndex<MyEnum>(3) ?: MyEnum.RED // RED
inline fun <reified T : Enum<T>> enumFromIndex(i: Int, default: T) =
enumValues<T>().getOrElse(i) { default }
enumFromIndex(2, MyEnum.RED) // BLUE
It is an adapted version of another answer. Also, thanks to Miha_x64 for this answer.
Another option...
enum class Types(val code: Int) {
FOO(1),
BAR(2),
FOO_BAR(3);
companion object {
val map = values().associate { it.code to it }
// Get Type by code with check existing codes and default
fun getByCode(code: Int, typeDefault_param: Types = FOO): Types {
return map[code] ?: typeDefault_param
}
}
}
fun main() {
println("get 3: ${Types.getByCode(3)}")
println("get 10: ${Types.getByCode(10)}")
}
get 3: FOO_BAR
get 10: FOO

Kotlin: store any type of function reference in a variable

Is it possible to have a variable that can holds any type function.
Like :
fun method1(par: Boolean){}
fun method2(par: Boolean) : Int{return 1}
fun method3(par: Boolean, par2: Boolean) : Int{return 1}
var funtionHolder : ((Any)->Any) ?= null //What should I write here?? so to hold any type of function
fun method4(){
.........
funtionHolder = ::method1 //getting compile time error
.........
funtionHolder = ::method2 //getting compile time error
.........
funtionHolder = ::method3 //getting compile time error
}
After holding the function_reference I need to invoke it later. So I need to holds it parameter type and state also.
You can hold them in a KFunction<Any> or its superclass KCallable<Any> because you know nothing about the parameter list and nothing about the return type, so you have to go to something that can reference at that level of abstraction. These instances can then be invoked more generically using the call() or callBy() methods. (this requires the kotlin-reflect dependency). To do something safer and to call like a normal function you'd have to cast back to the specific function type later.
If you want to avoid this, you'll need to unify your signatures to something you can point to with another function type (i.e. KFunction1 or KFunction2). Otherwise how you'll call this, what you'll do with it will be up to you at this point because you erased all the information that allows you to easily call the function.
val functionHolder1: KFunction<Any> = ::method1 // success!
val functionHolder2: KFunction<Any> = ::method2 // success!
val functionHolder3: KFunction<Any> = ::method3 // success!
You can then make a DeferredFunction class to hold these along with parameters you want to later pass, and then invoke it whenever in the future.
class DeferredFunction(val function: KFunction<Any>, vararg val params: Any?) {
#Suppress("UNCHECKED_CAST")
operator fun <T> invoke(): T {
return function.call(params) as T
}
}
fun whatever(name: String, age: Int): String {
return "$name of age $age"
}
val functionHolder = DeferredFunction(::whatever, "Fred", 65)
println(functionHolder<String>()) // "Fred of age 65"
You do not need the generic return type on the invoke function and could just make it return Any or call it as functionHolder<Any>() but it is nice if you know what to expect for the return. You can decide what to do there based on your actual use case. Also no need to special case for no parameters, just don't pass any, i.e. DeferredFunction(::otherFunc)
With reference from Jayson's answer, added extra code to hold the state of the function by using vararg and spread operator(*).
var functionHolder: KFunction<Any> ?= null
var paramsHolder : Array<out Any?> ?= null
fun hold(functionReference : KFunction<Any>, vararg args : Any?) {
this.functionHolder = functionReference
this.paramsHolder = args
}
fun release() {
if (functionHolder != null) {
if (paramsHolder != null) {
functionHolder?.call(*paramsHolder!!)
} else {
functionHolder?.call()
}
}
}
......
fun method3(par: Boolean, par2: Boolean) : Int{return 1}
......
hold(::method3, true, false)
release()//it works
No. Kotlin is static typed language and doesn't allow this. Else what happens when this is called?
functionHolder->invoke(3)
and when functionHolder is assigned a lamda that doesn't take parameter?

Kotlin - Destructuring in loops not working - var not accessible

some background:
val (name, age) = person
This syntax is called a destructuring declaration. It creates multiple variables (correction, creates multiple values) at at the same time.
Destructuring declarations also work in for-loops: when you say:
for ((a, b) in collection) { ... }
Lets take a look at a list item i have:
#Parcelize
data class MyModel(
var name: String = "",
var is_locked: Boolean = true,
var is_one_size: Boolean = false,
) : Parcelable
and now i have obtained a list of "MyModel" classes and i am trying to loop over them like this:
private fun initMyModelList(model: MutableList<MyModel>) {
//i want to access is_locked from here with destruction but i cant ? IDE telling me the type is an int but its clearly defined as a Boolean
for((is_locked) in model){
//what i want to do in here is access the is_locked var of the model list and change all of them in a loop. im trying to use Destructuring in loop as a conveience. why is it not working ?
//how can i make the call signature look like this--- > is_locked = true instad of model.is_locked =true
}
}
all i want to do is be able to call is_locked = true instead of model.is_locked = true within the loop. how can this be done ?
This syntax is called a destructuring declaration. It creates multiple variables at at the same time.
It doesn't create multiple variables, it captures multiple values. You're working with values, not references, as your source tells further:
A destructuring declaration is compiled down to the following code:
val name = person.component1()
val age = person.component2()
Closest to what you want would be this custom extension function:
inline fun <E> Iterable<E>.withEach(block: E.() -> Unit) {
forEach {
it.block()
}
}
Use like so:
model.withEach {
is_locked = true
}
Before you ask the obligatory question "why isn't this included in stdlib?" consider that functional style programming typically is about transforming immutable types. Basically, what I did here was encourage a bad habit.
Basically, it isn't possible, cause your code is compiled to something like:
for (m in models) {
val is_locked = m.component1()
...
}
Which means that you create a local property which cannot be reassigned. But you can do something like this:
for (m in model) {
with(m) {
is_locked = true
}
}
Yep, it isn't perfect, but it can be improved with extension methods:
fun <T> List<T>.forEachApply(block: T.() -> Unit) {
forEach(block)
}
private fun initMyModelList(model: MutableList<MyModel>) {
model.forEachApply {
is_locked = true
}
}
You can use destructuring in a loop just fine as read-only values.
data class Stuff(val name: String, val other: String)
fun doStuff() {
val stuff = Stuff("happy", "day")
val stuffs = listOf(stuff)
for ((name) in stuffs) {
println(name)
}
}
Running that method prints "happy" to the console. Baeldung shows an example of using it here.
It's best practice for data classes to be immutable, so I would try to rewrite your data class to be immutable. The .copy function will let you copy your data class but with new, different values.

How to instantiate a new instance of generic type

In C# you can place a new constraint on a generic to create a new instance of the generic parameter type, is there an equivalent in Kotlin?
Right now my work around is this:
fun <T> someMethod(class : () -> T) {
val newInstance = class()
}
and I'm calling someMethod() like this
someMethod<MyClass>(::MyClass)
but I would like to do something like this:
fun <T : new> someMethod() {
val newInstance = T()
}
Is that possible?
Currently, that's not possible. You can give a thumbs-up for the issue https://youtrack.jetbrains.com/issue/KT-6728 to vote for the addition of this feature.
At least, you can leave out the generic type because Kotlin can infer it:
someMethod(::MyClass)
A solution:
1/ use an inline function with preserved param type (reified type)
2/ in this inline function, invoque the needed constructor using class introspection (reflexion *)
/!\ an inline function can't be nested/embedded in a class or function
Let see how it works on a simple example:
// Here's 2 classes that take one init with one parameter named "param" of type String
//!\ to not put in a class or function
class A(val param: String) {}
class B(val param: String) {}
// Here's the inline function.
// It returns an optional because it could be passed some types that do not own
// a constructor with a param named param of type String
inline fun <reified T> createAnInstance(value: String) : T? {
val paramType = String::class.createType() //<< get createAnInstance param 'value' type
val constructor = T::class.constructors.filter {
it.parameters.size == 1 && it.parameters.filter { //< filter constructors with 1 param
it.name == "param" && it.type == paramType //< filter constructors whose name is "param" && type is 'value' type
}.size != 0
}.firstOrNull() //< get first item or returned list or null
return constructor?.call(value) // instantiate the class with value
}
// Execute. Note that to path the type to the function val/var must be type specified.
val a: A? = createAnInstance("Wow! A new instance of A")
val b: B? = createAnInstance("Wow! A new instance of B")
*) kotlin-reflect.jar must be included in the project
In Android Studio: add to build.gradle(Module: app): implementation "org.jetbrains.kotlin:kotlin-reflect:$kotlin_version"