How can I aggregate strings from many cells into one cell? - pandas

Say I have two classes with a handful of students each, and I want to think of the possible pairings in each class. In my original data, I have one line per student.
What's the easiest way in Pandas to turn this dataset
Class Students
0 1 A
1 1 B
2 1 C
3 1 D
4 1 E
5 2 F
6 2 G
7 2 H
Into this new stuff?
Class Students
0 1 A,B
1 1 A,C
2 1 A,D
3 1 A,E
4 1 B,C
5 1 B,D
6 1 B,E
7 1 C,D
6 1 B,E
8 1 C,D
9 1 C,E
10 1 D,E
11 2 F,G
12 2 F,H
12 2 G,H

Try This:
import itertools
import pandas as pd
cla = [1, 1, 1, 1, 1, 2, 2, 2]
s = ["A", "B", "C", "D" , "E", "F", "G", "H"]
df = pd.DataFrame(cla, columns=["Class"])
df['Student'] = s
def create_combos(list_students):
combos = itertools.combinations(list_students, 2)
str_students = []
for i in combos:
str_students.append(str(i[0])+","+str(i[1]))
return str_students
def iterate_df(class_id):
df_temp = df.loc[df['Class'] == class_id]
list_student = list(df_temp['Student'])
list_combos = create_combos(list_student)
list_id = [class_id for i in list_combos]
return list_id, list_combos
list_classes = set(list(df['Class']))
new_id = []
new_combos = []
for idx in list_classes:
tmp_id, tmp_combo = iterate_df(idx)
new_id += tmp_id
new_combos += tmp_combo
new_df = pd.DataFrame(new_id, columns=["Class"])
new_df["Student"] = new_combos
print(new_df)

Related

a list as a sublist of a list from group into list

I have a dataframe, which has 2 columns,
a b
0 1 2
1 1 1
2 1 1
3 1 2
4 1 1
5 2 0
6 2 1
7 2 1
8 2 2
9 2 2
10 2 1
11 2 1
12 2 2
Is there a direct way to make a third column as below
a b c
0 1 2 0
1 1 1 1
2 1 1 0
3 1 2 1
4 1 1 0
5 2 0 0
6 2 1 1
7 2 1 0
8 2 2 1
9 2 2 0
10 2 1 0
11 2 1 0
12 2 2 0
in which target [1, 2] is a sublist of df.groupby('a').b.apply(list), find the 2 rows that firstly fit the target in every group.
df.groupby('a').b.apply(list) gives
1 [2, 1, 1, 2, 1]
2 [0, 1, 1, 2, 2, 1, 1, 2]
[1,2] is a sublist of [2, 1, 1, 2, 1] and [0, 1, 1, 2, 2, 1, 1, 2]
so far, I have a function
def is_sub_with_gap(sub, lst):
'''
check if sub is a sublist of lst
'''
ln, j = len(sub), 0
ans = []
for i, ele in enumerate(lst):
if ele == sub[j]:
j += 1
ans.append(i)
if j == ln:
return True, ans
return False, []
test on the function
In [55]: is_sub_with_gap([1,2], [2, 1, 1, 2, 1])
Out[55]: (True, [1, 3])
You can change output by select index values of groups in custom function, flatten it by Series.explode and then test index values by Index.isin:
L = [1, 2]
def is_sub_with_gap(sub, lst):
'''
check of sub is a sublist of lst
'''
ln, j = len(sub), 0
ans = []
for i, ele in enumerate(lst):
if ele == sub[j]:
j += 1
ans.append(i)
if j == ln:
return lst.index[ans]
return []
idx = df.groupby('a').b.apply(lambda x: is_sub_with_gap(L, x)).explode()
df['c'] = df.index.isin(idx).view('i1')
print (df)
a b c
0 1 2 0
1 1 1 1
2 1 1 0
3 1 2 1
4 1 1 0
5 2 0 0
6 2 1 1
7 2 1 0
8 2 2 1
9 2 2 0
10 2 1 0
11 2 1 0
12 2 2 0

Pandas - Converting rows with commas in to multiple rows in a Dataframe [duplicate]

I have the following DataFrame where one of the columns is an object (list type cell):
df = pd.DataFrame({'A': [1, 2], 'B': [[1, 2], [1, 2]]})
Output:
A B
0 1 [1, 2]
1 2 [1, 2]
My expected output is:
A B
0 1 1
1 1 2
3 2 1
4 2 2
What should I do to achieve this?
Related question
Pandas column of lists, create a row for each list element
Good question and answer but only handle one column with list(In my answer the self-def function will work for multiple columns, also the accepted answer is use the most time consuming apply , which is not recommended, check more info When should I (not) want to use pandas apply() in my code?)
I know object dtype columns makes the data hard to convert with pandas functions. When I receive data like this, the first thing that came to mind was to "flatten" or unnest the columns.
I am using pandas and Python functions for this type of question. If you are worried about the speed of the above solutions, check out user3483203's answer, since it's using numpy and most of the time numpy is faster. I recommend Cython or numba if speed matters.
Method 0 [pandas >= 0.25]
Starting from pandas 0.25, if you only need to explode one column, you can use the pandas.DataFrame.explode function:
df.explode('B')
A B
0 1 1
1 1 2
0 2 1
1 2 2
Given a dataframe with an empty list or a NaN in the column. An empty list will not cause an issue, but a NaN will need to be filled with a list
df = pd.DataFrame({'A': [1, 2, 3, 4],'B': [[1, 2], [1, 2], [], np.nan]})
df.B = df.B.fillna({i: [] for i in df.index}) # replace NaN with []
df.explode('B')
A B
0 1 1
0 1 2
1 2 1
1 2 2
2 3 NaN
3 4 NaN
Method 1
apply + pd.Series (easy to understand but in terms of performance not recommended . )
df.set_index('A').B.apply(pd.Series).stack().reset_index(level=0).rename(columns={0:'B'})
Out[463]:
A B
0 1 1
1 1 2
0 2 1
1 2 2
Method 2
Using repeat with DataFrame constructor , re-create your dataframe (good at performance, not good at multiple columns )
df=pd.DataFrame({'A':df.A.repeat(df.B.str.len()),'B':np.concatenate(df.B.values)})
df
Out[465]:
A B
0 1 1
0 1 2
1 2 1
1 2 2
Method 2.1
for example besides A we have A.1 .....A.n. If we still use the method(Method 2) above it is hard for us to re-create the columns one by one .
Solution : join or merge with the index after 'unnest' the single columns
s=pd.DataFrame({'B':np.concatenate(df.B.values)},index=df.index.repeat(df.B.str.len()))
s.join(df.drop('B',1),how='left')
Out[477]:
B A
0 1 1
0 2 1
1 1 2
1 2 2
If you need the column order exactly the same as before, add reindex at the end.
s.join(df.drop('B',1),how='left').reindex(columns=df.columns)
Method 3
recreate the list
pd.DataFrame([[x] + [z] for x, y in df.values for z in y],columns=df.columns)
Out[488]:
A B
0 1 1
1 1 2
2 2 1
3 2 2
If more than two columns, use
s=pd.DataFrame([[x] + [z] for x, y in zip(df.index,df.B) for z in y])
s.merge(df,left_on=0,right_index=True)
Out[491]:
0 1 A B
0 0 1 1 [1, 2]
1 0 2 1 [1, 2]
2 1 1 2 [1, 2]
3 1 2 2 [1, 2]
Method 4
using reindex or loc
df.reindex(df.index.repeat(df.B.str.len())).assign(B=np.concatenate(df.B.values))
Out[554]:
A B
0 1 1
0 1 2
1 2 1
1 2 2
#df.loc[df.index.repeat(df.B.str.len())].assign(B=np.concatenate(df.B.values))
Method 5
when the list only contains unique values:
df=pd.DataFrame({'A':[1,2],'B':[[1,2],[3,4]]})
from collections import ChainMap
d = dict(ChainMap(*map(dict.fromkeys, df['B'], df['A'])))
pd.DataFrame(list(d.items()),columns=df.columns[::-1])
Out[574]:
B A
0 1 1
1 2 1
2 3 2
3 4 2
Method 6
using numpy for high performance:
newvalues=np.dstack((np.repeat(df.A.values,list(map(len,df.B.values))),np.concatenate(df.B.values)))
pd.DataFrame(data=newvalues[0],columns=df.columns)
A B
0 1 1
1 1 2
2 2 1
3 2 2
Method 7
using base function itertools cycle and chain: Pure python solution just for fun
from itertools import cycle,chain
l=df.values.tolist()
l1=[list(zip([x[0]], cycle(x[1])) if len([x[0]]) > len(x[1]) else list(zip(cycle([x[0]]), x[1]))) for x in l]
pd.DataFrame(list(chain.from_iterable(l1)),columns=df.columns)
A B
0 1 1
1 1 2
2 2 1
3 2 2
Generalizing to multiple columns
df=pd.DataFrame({'A':[1,2],'B':[[1,2],[3,4]],'C':[[1,2],[3,4]]})
df
Out[592]:
A B C
0 1 [1, 2] [1, 2]
1 2 [3, 4] [3, 4]
Self-def function:
def unnesting(df, explode):
idx = df.index.repeat(df[explode[0]].str.len())
df1 = pd.concat([
pd.DataFrame({x: np.concatenate(df[x].values)}) for x in explode], axis=1)
df1.index = idx
return df1.join(df.drop(explode, 1), how='left')
unnesting(df,['B','C'])
Out[609]:
B C A
0 1 1 1
0 2 2 1
1 3 3 2
1 4 4 2
Column-wise Unnesting
All above method is talking about the vertical unnesting and explode , If you do need expend the list horizontal, Check with pd.DataFrame constructor
df.join(pd.DataFrame(df.B.tolist(),index=df.index).add_prefix('B_'))
Out[33]:
A B C B_0 B_1
0 1 [1, 2] [1, 2] 1 2
1 2 [3, 4] [3, 4] 3 4
Updated function
def unnesting(df, explode, axis):
if axis==1:
idx = df.index.repeat(df[explode[0]].str.len())
df1 = pd.concat([
pd.DataFrame({x: np.concatenate(df[x].values)}) for x in explode], axis=1)
df1.index = idx
return df1.join(df.drop(explode, 1), how='left')
else :
df1 = pd.concat([
pd.DataFrame(df[x].tolist(), index=df.index).add_prefix(x) for x in explode], axis=1)
return df1.join(df.drop(explode, 1), how='left')
Test Output
unnesting(df, ['B','C'], axis=0)
Out[36]:
B0 B1 C0 C1 A
0 1 2 1 2 1
1 3 4 3 4 2
Update 2021-02-17 with original explode function
def unnesting(df, explode, axis):
if axis==1:
df1 = pd.concat([df[x].explode() for x in explode], axis=1)
return df1.join(df.drop(explode, 1), how='left')
else :
df1 = pd.concat([
pd.DataFrame(df[x].tolist(), index=df.index).add_prefix(x) for x in explode], axis=1)
return df1.join(df.drop(explode, 1), how='left')
Option 1
If all of the sublists in the other column are the same length, numpy can be an efficient option here:
vals = np.array(df.B.values.tolist())
a = np.repeat(df.A, vals.shape[1])
pd.DataFrame(np.column_stack((a, vals.ravel())), columns=df.columns)
A B
0 1 1
1 1 2
2 2 1
3 2 2
Option 2
If the sublists have different length, you need an additional step:
vals = df.B.values.tolist()
rs = [len(r) for r in vals]
a = np.repeat(df.A, rs)
pd.DataFrame(np.column_stack((a, np.concatenate(vals))), columns=df.columns)
A B
0 1 1
1 1 2
2 2 1
3 2 2
Option 3
I took a shot at generalizing this to work to flatten N columns and tile M columns, I'll work later on making it more efficient:
df = pd.DataFrame({'A': [1,2,3], 'B': [[1,2], [1,2,3], [1]],
'C': [[1,2,3], [1,2], [1,2]], 'D': ['A', 'B', 'C']})
A B C D
0 1 [1, 2] [1, 2, 3] A
1 2 [1, 2, 3] [1, 2] B
2 3 [1] [1, 2] C
def unnest(df, tile, explode):
vals = df[explode].sum(1)
rs = [len(r) for r in vals]
a = np.repeat(df[tile].values, rs, axis=0)
b = np.concatenate(vals.values)
d = np.column_stack((a, b))
return pd.DataFrame(d, columns = tile + ['_'.join(explode)])
unnest(df, ['A', 'D'], ['B', 'C'])
A D B_C
0 1 A 1
1 1 A 2
2 1 A 1
3 1 A 2
4 1 A 3
5 2 B 1
6 2 B 2
7 2 B 3
8 2 B 1
9 2 B 2
10 3 C 1
11 3 C 1
12 3 C 2
Functions
def wen1(df):
return df.set_index('A').B.apply(pd.Series).stack().reset_index(level=0).rename(columns={0: 'B'})
def wen2(df):
return pd.DataFrame({'A':df.A.repeat(df.B.str.len()),'B':np.concatenate(df.B.values)})
def wen3(df):
s = pd.DataFrame({'B': np.concatenate(df.B.values)}, index=df.index.repeat(df.B.str.len()))
return s.join(df.drop('B', 1), how='left')
def wen4(df):
return pd.DataFrame([[x] + [z] for x, y in df.values for z in y],columns=df.columns)
def chris1(df):
vals = np.array(df.B.values.tolist())
a = np.repeat(df.A, vals.shape[1])
return pd.DataFrame(np.column_stack((a, vals.ravel())), columns=df.columns)
def chris2(df):
vals = df.B.values.tolist()
rs = [len(r) for r in vals]
a = np.repeat(df.A.values, rs)
return pd.DataFrame(np.column_stack((a, np.concatenate(vals))), columns=df.columns)
Timings
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from timeit import timeit
res = pd.DataFrame(
index=['wen1', 'wen2', 'wen3', 'wen4', 'chris1', 'chris2'],
columns=[10, 50, 100, 500, 1000, 5000, 10000],
dtype=float
)
for f in res.index:
for c in res.columns:
df = pd.DataFrame({'A': [1, 2], 'B': [[1, 2], [1, 2]]})
df = pd.concat([df]*c)
stmt = '{}(df)'.format(f)
setp = 'from __main__ import df, {}'.format(f)
res.at[f, c] = timeit(stmt, setp, number=50)
ax = res.div(res.min()).T.plot(loglog=True)
ax.set_xlabel("N")
ax.set_ylabel("time (relative)")
Performance
Exploding a list-like column has been simplified significantly in pandas 0.25 with the addition of the explode() method:
df = pd.DataFrame({'A': [1, 2], 'B': [[1, 2], [1, 2]]})
df.explode('B')
Out:
A B
0 1 1
0 1 2
1 2 1
1 2 2
One alternative is to apply the meshgrid recipe over the rows of the columns to unnest:
import numpy as np
import pandas as pd
def unnest(frame, explode):
def mesh(values):
return np.array(np.meshgrid(*values)).T.reshape(-1, len(values))
data = np.vstack(mesh(row) for row in frame[explode].values)
return pd.DataFrame(data=data, columns=explode)
df = pd.DataFrame({'A': [1, 2], 'B': [[1, 2], [1, 2]]})
print(unnest(df, ['A', 'B'])) # base
print()
df = pd.DataFrame({'A': [1, 2], 'B': [[1, 2], [3, 4]], 'C': [[1, 2], [3, 4]]})
print(unnest(df, ['A', 'B', 'C'])) # multiple columns
print()
df = pd.DataFrame({'A': [1, 2, 3], 'B': [[1, 2], [1, 2, 3], [1]],
'C': [[1, 2, 3], [1, 2], [1, 2]], 'D': ['A', 'B', 'C']})
print(unnest(df, ['A', 'B'])) # uneven length lists
print()
print(unnest(df, ['D', 'B'])) # different types
print()
Output
A B
0 1 1
1 1 2
2 2 1
3 2 2
A B C
0 1 1 1
1 1 2 1
2 1 1 2
3 1 2 2
4 2 3 3
5 2 4 3
6 2 3 4
7 2 4 4
A B
0 1 1
1 1 2
2 2 1
3 2 2
4 2 3
5 3 1
D B
0 A 1
1 A 2
2 B 1
3 B 2
4 B 3
5 C 1
Problem Setup
Assume there are multiple columns with different length objects within it
df = pd.DataFrame({
'A': [1, 2],
'B': [[1, 2], [3, 4]],
'C': [[1, 2], [3, 4, 5]]
})
df
A B C
0 1 [1, 2] [1, 2]
1 2 [3, 4] [3, 4, 5]
When the lengths are the same, it is easy for us to assume that the varying elements coincide and should be "zipped" together.
A B C
0 1 [1, 2] [1, 2] # Typical to assume these should be zipped [(1, 1), (2, 2)]
1 2 [3, 4] [3, 4, 5]
However, the assumption gets challenged when we see different length objects, should we "zip", if so, how do we handle the excess in one of the objects. OR, maybe we want the product of all of the objects. This will get big fast, but might be what is wanted.
A B C
0 1 [1, 2] [1, 2]
1 2 [3, 4] [3, 4, 5] # is this [(3, 3), (4, 4), (None, 5)]?
OR
A B C
0 1 [1, 2] [1, 2]
1 2 [3, 4] [3, 4, 5] # is this [(3, 3), (3, 4), (3, 5), (4, 3), (4, 4), (4, 5)]
The Function
This function gracefully handles zip or product based on a parameter and assumes to zip according to the length of the longest object with zip_longest
from itertools import zip_longest, product
def xplode(df, explode, zipped=True):
method = zip_longest if zipped else product
rest = {*df} - {*explode}
zipped = zip(zip(*map(df.get, rest)), zip(*map(df.get, explode)))
tups = [tup + exploded
for tup, pre in zipped
for exploded in method(*pre)]
return pd.DataFrame(tups, columns=[*rest, *explode])[[*df]]
Zipped
xplode(df, ['B', 'C'])
A B C
0 1 1.0 1
1 1 2.0 2
2 2 3.0 3
3 2 4.0 4
4 2 NaN 5
Product
xplode(df, ['B', 'C'], zipped=False)
A B C
0 1 1 1
1 1 1 2
2 1 2 1
3 1 2 2
4 2 3 3
5 2 3 4
6 2 3 5
7 2 4 3
8 2 4 4
9 2 4 5
New Setup
Varying up the example a bit
df = pd.DataFrame({
'A': [1, 2],
'B': [[1, 2], [3, 4]],
'C': 'C',
'D': [[1, 2], [3, 4, 5]],
'E': [('X', 'Y', 'Z'), ('W',)]
})
df
A B C D E
0 1 [1, 2] C [1, 2] (X, Y, Z)
1 2 [3, 4] C [3, 4, 5] (W,)
Zipped
xplode(df, ['B', 'D', 'E'])
A B C D E
0 1 1.0 C 1.0 X
1 1 2.0 C 2.0 Y
2 1 NaN C NaN Z
3 2 3.0 C 3.0 W
4 2 4.0 C 4.0 None
5 2 NaN C 5.0 None
Product
xplode(df, ['B', 'D', 'E'], zipped=False)
A B C D E
0 1 1 C 1 X
1 1 1 C 1 Y
2 1 1 C 1 Z
3 1 1 C 2 X
4 1 1 C 2 Y
5 1 1 C 2 Z
6 1 2 C 1 X
7 1 2 C 1 Y
8 1 2 C 1 Z
9 1 2 C 2 X
10 1 2 C 2 Y
11 1 2 C 2 Z
12 2 3 C 3 W
13 2 3 C 4 W
14 2 3 C 5 W
15 2 4 C 3 W
16 2 4 C 4 W
17 2 4 C 5 W
My 5 cents:
df[['B', 'B2']] = pd.DataFrame(df['B'].values.tolist())
df[['A', 'B']].append(df[['A', 'B2']].rename(columns={'B2': 'B'}),
ignore_index=True)
and another 5
df[['B1', 'B2']] = pd.DataFrame([*df['B']]) # if values.tolist() is too boring
(pd.wide_to_long(df.drop('B', 1), 'B', 'A', '')
.reset_index(level=1, drop=True)
.reset_index())
both resulting in the same
A B
0 1 1
1 2 1
2 1 2
3 2 2
Because normally sublist length are different and join/merge is far more computational expensive. I retested the method for different length sublist and more normal columns.
MultiIndex should be also a easier way to write and has near the same performances as numpy way.
Surprisingly, in my implementation comprehension way has the best performance.
def stack(df):
return df.set_index(['A', 'C']).B.apply(pd.Series).stack()
def comprehension(df):
return pd.DataFrame([x + [z] for x, y in zip(df[['A', 'C']].values.tolist(), df.B) for z in y])
def multiindex(df):
return pd.DataFrame(np.concatenate(df.B.values), index=df.set_index(['A', 'C']).index.repeat(df.B.str.len()))
def array(df):
return pd.DataFrame(
np.column_stack((
np.repeat(df[['A', 'C']].values, df.B.str.len(), axis=0),
np.concatenate(df.B.values)
))
)
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from timeit import timeit
res = pd.DataFrame(
index=[
'stack',
'comprehension',
'multiindex',
'array',
],
columns=[1000, 2000, 5000, 10000, 20000, 50000],
dtype=float
)
for f in res.index:
for c in res.columns:
df = pd.DataFrame({'A': list('abc'), 'C': list('def'), 'B': [['g', 'h', 'i'], ['j', 'k'], ['l']]})
df = pd.concat([df] * c)
stmt = '{}(df)'.format(f)
setp = 'from __main__ import df, {}'.format(f)
res.at[f, c] = timeit(stmt, setp, number=20)
ax = res.div(res.min()).T.plot(loglog=True)
ax.set_xlabel("N")
ax.set_ylabel("time (relative)")
Performance
Relative time of each method
I generalized the problem a bit to be applicable to more columns.
Summary of what my solution does:
In[74]: df
Out[74]:
A B C columnD
0 A1 B1 [C1.1, C1.2] D1
1 A2 B2 [C2.1, C2.2] [D2.1, D2.2, D2.3]
2 A3 B3 C3 [D3.1, D3.2]
In[75]: dfListExplode(df,['C','columnD'])
Out[75]:
A B C columnD
0 A1 B1 C1.1 D1
1 A1 B1 C1.2 D1
2 A2 B2 C2.1 D2.1
3 A2 B2 C2.1 D2.2
4 A2 B2 C2.1 D2.3
5 A2 B2 C2.2 D2.1
6 A2 B2 C2.2 D2.2
7 A2 B2 C2.2 D2.3
8 A3 B3 C3 D3.1
9 A3 B3 C3 D3.2
Complete example:
The actual explosion is performed in 3 lines. The rest is cosmetics (multi column explosion, handling of strings instead of lists in the explosion column, ...).
import pandas as pd
import numpy as np
df=pd.DataFrame( {'A': ['A1','A2','A3'],
'B': ['B1','B2','B3'],
'C': [ ['C1.1','C1.2'],['C2.1','C2.2'],'C3'],
'columnD': [ 'D1',['D2.1','D2.2', 'D2.3'],['D3.1','D3.2']],
})
print('df',df, sep='\n')
def dfListExplode(df, explodeKeys):
if not isinstance(explodeKeys, list):
explodeKeys=[explodeKeys]
# recursive handling of explodeKeys
if len(explodeKeys)==0:
return df
elif len(explodeKeys)==1:
explodeKey=explodeKeys[0]
else:
return dfListExplode( dfListExplode(df, explodeKeys[:1]), explodeKeys[1:])
# perform explosion/unnesting for key: explodeKey
dfPrep=df[explodeKey].apply(lambda x: x if isinstance(x,list) else [x]) #casts all elements to a list
dfIndExpl=pd.DataFrame([[x] + [z] for x, y in zip(dfPrep.index,dfPrep.values) for z in y ], columns=['explodedIndex',explodeKey])
dfMerged=dfIndExpl.merge(df.drop(explodeKey, axis=1), left_on='explodedIndex', right_index=True)
dfReind=dfMerged.reindex(columns=list(df))
return dfReind
dfExpl=dfListExplode(df,['C','columnD'])
print('dfExpl',dfExpl, sep='\n')
Credits to WeNYoBen's answer
Something pretty not recommended (at least work in this case):
df=pd.concat([df]*2).sort_index()
it=iter(df['B'].tolist()[0]+df['B'].tolist()[0])
df['B']=df['B'].apply(lambda x:next(it))
concat + sort_index + iter + apply + next.
Now:
print(df)
Is:
A B
0 1 1
0 1 2
1 2 1
1 2 2
If care about index:
df=df.reset_index(drop=True)
Now:
print(df)
Is:
A B
0 1 1
1 1 2
2 2 1
3 2 2
df=pd.DataFrame({'A':[1,2],'B':[[1,2],[1,2]]})
pd.concat([df['A'], pd.DataFrame(df['B'].values.tolist())], axis = 1)\
.melt(id_vars = 'A', value_name = 'B')\
.dropna()\
.drop('variable', axis = 1)
A B
0 1 1
1 2 1
2 1 2
3 2 2
Any opinions on this method I thought of? or is doing both concat and melt considered too "expensive"?
I have another good way to solves this when you have more than one column to explode.
df=pd.DataFrame({'A':[1,2],'B':[[1,2],[1,2]], 'C':[[1,2,3],[1,2,3]]})
print(df)
A B C
0 1 [1, 2] [1, 2, 3]
1 2 [1, 2] [1, 2, 3]
I want to explode the columns B and C. First I explode B, second C. Than I drop B and C from the original df. After that I will do an index join on the 3 dfs.
explode_b = df.explode('B')['B']
explode_c = df.explode('C')['C']
df = df.drop(['B', 'C'], axis=1)
df = df.join([explode_b, explode_c])
df=pd.DataFrame({'A':[1,2],'B':[[1,2],[1,2]]})
out = pd.concat([df.loc[:,'A'],(df.B.apply(pd.Series))], axis=1, sort=False)
out = out.set_index('A').stack().droplevel(level=1).reset_index().rename(columns={0:"B"})
A B
0 1 1
1 1 2
2 2 1
3 2 2
you can implement this as one liner, if you don't wish to create intermediate object
# Here's the answer to the related question in:
# https://stackoverflow.com/q/56708671/11426125
# initial dataframe
df12=pd.DataFrame({'Date':['2007-12-03','2008-09-07'],'names':
[['Peter','Alex'],['Donald','Stan']]})
# convert dataframe to array for indexing list values (names)
a = np.array(df12.values)
# create a new, dataframe with dimensions for unnested
b = np.ndarray(shape = (4,2))
df2 = pd.DataFrame(b, columns = ["Date", "names"], dtype = str)
# implement loops to assign date/name values as required
i = range(len(a[0]))
j = range(len(a[0]))
for x in i:
for y in j:
df2.iat[2*x+y, 0] = a[x][0]
df2.iat[2*x+y, 1] = a[x][1][y]
# set Date column as Index
df2.Date=pd.to_datetime(df2.Date)
df2.index=df2.Date
df2.drop('Date',axis=1,inplace =True)
In my case with more than one column to explode, and with variables lengths for the arrays that needs to be unnested.
I ended up applying the new pandas 0.25 explode function two times, then removing generated duplicates and it does the job !
df = df.explode('A')
df = df.explode('B')
df = df.drop_duplicates()
Below is a simple function for horizontal explode, based on #BEN_YO's answer.
import typing
import pandas as pd
def horizontal_explode(df: pd.DataFrame, col_name: str, new_columns: typing.Union[list, None]=None) -> pd.DataFrame:
t = pd.DataFrame(df[col_name].tolist(), columns=new_columns, index=df.index)
return pd.concat([df, t], axis=1)
Running example:
items = [
["1", ["a", "b", "c"]],
["2", ["d", "e", "f"]]
]
df = pd.DataFrame(items, columns = ["col1", "col2"])
print(df)
t = horizontal_explode(df=df, col_name="col2")
del t["col2"]
print(t)
t = horizontal_explode(df=df, col_name="col2", new_columns=["new_col1", "new_col2", "new_col3"])
del t["col2"]
print(t)
This the relevant output:
col1 col2
0 1 [a, b, c]
1 2 [d, e, f]
col1 0 1 2
0 1 a b c
1 2 d e f
col1 new_col1 new_col2 new_col3
0 1 a b c
1 2 d e f
demo = {'set1':{'t1':[1,2,3],'t2':[4,5,6],'t3':[7,8,9]}, 'set2':{'t1':[1,2,3],'t2':[4,5,6],'t3':[7,8,9]}, 'set3': {'t1':[1,2,3],'t2':[4,5,6],'t3':[7,8,9]}}
df = pd.DataFrame.from_dict(demo, orient='index')
print(df.head())
my_list=[]
df2=pd.DataFrame(columns=['set','t1','t2','t3'])
for key,item in df.iterrows():
t1=item.t1
t2=item.t2
t3=item.t3
mat1=np.matrix([t1,t2,t3])
row1=[key,mat1[0,0],mat1[0,1],mat1[0,2]]
df2.loc[len(df2)]=row1
row2=[key,mat1[1,0],mat1[1,1],mat1[1,2]]
df2.loc[len(df2)]=row2
row3=[key,mat1[2,0],mat1[2,1],mat1[2,2]]
df2.loc[len(df2)]=row3
print(df2)
set t1 t2 t3
0 set1 1 2 3
1 set1 4 5 6
2 set1 7 8 9
3 set2 1 2 3
4 set2 4 5 6
5 set2 7 8 9
6 set3 1 2 3
7 set3 4 5 6
8 set3 7 8 9

How to do the formulas without splitting the dataframe which had different conditions

I have the following dataframe
import pandas as pd
d = {
'ID':[1,2,3,4,5],
'Price1':[5,9,4,3,9],
'Price2':[9,10,13,14,18],
'Type':['A','A','B','C','D'],
}
df = pd.DataFrame(data = d)
df
For applying the formula without condition I use the following code
df = df.eval(
'Price = (Price1*Price1)/2'
)
df
How to do the formulas without splitting the dataframe which had different conditions
Need a new column called Price_on_type
The formula is differing for each type
For type A the formula for Price_on_type = Price1+Price1
For type B the formula for Price_on_type = (Price1+Price1)/2
For type C the formula for Price_on_type = Price1
For type D the formula for Price_on_type = Price2
Expected Output:
import pandas as pd
d = {
'ID':[1,2,3,4,5],
'Price1':[5,9,4,3,9],
'Price2':[9,10,13,14,18],
'Price':[12.5,40.5, 8.0, 4.5, 40.5],
'Price_on_type':[14,19,8.0,3,18],
}
df = pd.DataFrame(data = d)
df
You can use numpy.select:
masks = [df['Type'] == 'A',
df['Type'] == 'B',
df['Type'] == 'C',
df['Type'] == 'D']
vals = [df.eval('(Price1*Price1)'),
df.eval('(Price1*Price1)/2'),
df['Price1'],
df['Price2']]
Or:
vals = [df['Price1'] + df['Price2'],
(df['Price1'] + df['Price2']) / 2,
df['Price1'],
df['Price2']]
df['Price_on_type'] = np.select(masks, vals)
print (df)
ID Price1 Price2 Type Price_on_type
0 1 5 9 A 14.0
1 2 9 10 A 19.0
2 3 4 13 B 8.5
3 4 3 14 C 3.0
4 5 9 18 D 18.0
If your data is not too big, using apply with custom function on axis=1
def Prices(x):
dict_sw = {
'A': x.Price1 + x.Price2,
'B': (x.Price1 + x.Price2)/2,
'C': x.Price1,
'D': x.Price2,
}
return dict_sw[x.Type]
In [239]: df['Price_on_type'] = df.apply(Prices, axis=1)
In [240]: df
Out[240]:
ID Price1 Price2 Type Price_on_type
0 1 5 9 A 14.0
1 2 9 10 A 19.0
2 3 4 13 B 8.5
3 4 3 14 C 3.0
4 5 9 18 D 18.0
Or using the trick convert True to 1 and False to 0
df['Price_on_type'] = \
(df.Type == 'A') * (df.Price1 + df.Price2) + \
(df.Type == 'B') * (df.Price1 + df.Price2)/2 + \
(df.Type == 'C') * df.Price1 + \
(df.Type == 'D') * df.Price2
Out[308]:
ID Price1 Price2 Type Price_on_type
0 1 5 9 A 14.0
1 2 9 10 A 19.0
2 3 4 13 B 8.5
3 4 3 14 C 3.0
4 5 9 18 D 18.0

Apply function on a two dataframe rows

Given a pandas dataframe like this:
df = pd.DataFrame({'col1': [1, 2, 3], 'col2': [4, 5, 6]})
col1 col2
0 1 4
1 2 5
2 3 6
I would like to do something equivalent to this using a function but without passing "by value" or as a global variable the whole dataframe (it could be huge and then it would give me a memory error):
i = -1
for index, row in df.iterrows():
if i < 0:
i = index
continue
c1 = df.loc[i][0] + df.loc[index][0]
c2 = df.loc[i][1] + df.loc[index][1]
df.ix[index, 0] = c1
df.ix[index, 1] = c2
i = index
col1 col2
0 1 4
1 3 9
2 6 15
i.e., I would like to have a function which will give me the previous output:
def my_function(two_rows):
row1 = two_rows[0]
row2 = two_rows[1]
c1 = row1[0] + row2[0]
c2 = row1[1] + row2[1]
row2[0] = c1
row2[1] = c2
return row2
df.apply(my_function, axis=1)
df
col1 col2
0 1 4
1 3 9
2 6 15
Is there a way of doing this?
What you've demonstrated is a cumsum
df.cumsum()
col1 col2
0 1 4
1 3 9
2 6 15
def f(df):
n = len(df)
r = range(1, n)
for j in df.columns:
for i in r:
df[j].values[i] += df[j].values[i - 1]
return df
f(df)
To define a function as a loop that does this in place
Slow cell by cell
def f(df):
n = len(df)
r = range(1, n)
for j in df.columns:
for i in r:
df[j].values[i] += df[j].values[i - 1]
return df
f(df)
col1 col2
0 1 4
1 3 9
2 6 15
Compromise between memory and efficiency
def f(df):
for j in df.columns:
df[j].values[:] = df[j].values.cumsum()
return df
f(df)
f(df)
col1 col2
0 1 4
1 3 9
2 6 15
Note that you don't need to return df. I chose to for convenience.

How to build column by column dataframe pandas

I have a dataframe looking like this example
A | B | C
__|___|___
s s nan
nan x x
I would like to create a table of intersections between columns like this
| A | B | C
__|______|____|______
A | True |True| False
__|______|____|______
B | True |True|True
__|______|____|______
C | False|True|True
__|______|____|______
Is there an elegant cycle-free way to do it?
Thank you!
Setup
df = pd.DataFrame(dict(A=['s', np.nan], B=['s', 'x'], C=[np.nan, 'x']))
Option 1
You can use numpy broadcasting to evaluate each column by each other column. Then determine if any of the comparisons are True
v = df.values
pd.DataFrame(
(v[:, :, None] == v[:, None]).any(0),
df.columns, df.columns
)
A B C
A True True False
B True True True
C False True True
By replacing any with sum you can get a count of how many intersections.
v = df.values
pd.DataFrame(
(v[:, :, None] == v[:, None]).sum(0),
df.columns, df.columns
)
A B C
A 1 1 0
B 1 2 1
C 0 1 1
Or use np.count_nonzero instead of sum
v = df.values
pd.DataFrame(
np.count_nonzero(v[:, :, None] == v[:, None], 0),
df.columns, df.columns
)
A B C
A 1 1 0
B 1 2 1
C 0 1 1
Option 2
Fun & Creative way
d = pd.get_dummies(df.stack()).unstack(fill_value=0)
d = d.T.dot(d)
d.groupby(level=1).sum().groupby(level=1, axis=1).sum()
A B C
A 1 1 0
B 1 2 1
C 0 1 1