Given a pandas dataframe like this:
df = pd.DataFrame({'col1': [1, 2, 3], 'col2': [4, 5, 6]})
col1 col2
0 1 4
1 2 5
2 3 6
I would like to do something equivalent to this using a function but without passing "by value" or as a global variable the whole dataframe (it could be huge and then it would give me a memory error):
i = -1
for index, row in df.iterrows():
if i < 0:
i = index
continue
c1 = df.loc[i][0] + df.loc[index][0]
c2 = df.loc[i][1] + df.loc[index][1]
df.ix[index, 0] = c1
df.ix[index, 1] = c2
i = index
col1 col2
0 1 4
1 3 9
2 6 15
i.e., I would like to have a function which will give me the previous output:
def my_function(two_rows):
row1 = two_rows[0]
row2 = two_rows[1]
c1 = row1[0] + row2[0]
c2 = row1[1] + row2[1]
row2[0] = c1
row2[1] = c2
return row2
df.apply(my_function, axis=1)
df
col1 col2
0 1 4
1 3 9
2 6 15
Is there a way of doing this?
What you've demonstrated is a cumsum
df.cumsum()
col1 col2
0 1 4
1 3 9
2 6 15
def f(df):
n = len(df)
r = range(1, n)
for j in df.columns:
for i in r:
df[j].values[i] += df[j].values[i - 1]
return df
f(df)
To define a function as a loop that does this in place
Slow cell by cell
def f(df):
n = len(df)
r = range(1, n)
for j in df.columns:
for i in r:
df[j].values[i] += df[j].values[i - 1]
return df
f(df)
col1 col2
0 1 4
1 3 9
2 6 15
Compromise between memory and efficiency
def f(df):
for j in df.columns:
df[j].values[:] = df[j].values.cumsum()
return df
f(df)
f(df)
col1 col2
0 1 4
1 3 9
2 6 15
Note that you don't need to return df. I chose to for convenience.
Related
I have data like below:
df = pd.DataFrame()
df["collection_amount"] = 100, 200, 300
df["25%_coll"] = 1, 0, 1
df["75%_coll"] = 0, 1, 1
df["month"] = 4, 5, 6
I want to create a output like below:
basically if 25% is 1 then it should create a column based on month as a new column.
Please help me thank you.
This should work: do ask if something doesn't make sense
for i in range(len(df)):
if df['25%_coll'][i]==1:
df['month_%i_25%%_coll'%df.month[i]]=[df.collection_amount[i] if k==i else 0 for k in range(len(df))]
if df['75%_coll'][i]==1:
df['month_%i_75%%_coll'%df.month[i]]=[df.collection_amount[i] if k==i else 0 for k in range(len(df))]
To build the new columns you could try the following:
df2 = df.melt(id_vars=["month", "collection_amount"])
df2.loc[df2["value"].eq(0), "collection_amount"] = 0
df2["new_cols"] = "month_" + df2["month"].astype("str") + "_" + df2["variable"]
df2 = df2.pivot_table(
index="month", columns="new_cols", values="collection_amount",
fill_value=0, aggfunc="sum"
).reset_index(drop=True)
.melt() the dataframe with index columns month and collection_amount.
Set the appropriate collection_amount values to 0.
Build the new column names in column new_cols.
month collection_amount variable value new_cols
0 4 100 25%_coll 1 month_4_25%_coll
1 5 0 25%_coll 0 month_5_25%_coll
2 6 300 25%_coll 1 month_6_25%_coll
3 4 0 75%_coll 0 month_4_75%_coll
4 5 200 75%_coll 1 month_5_75%_coll
5 6 300 75%_coll 1 month_6_75%_coll
Use .pivot_table() on this dataframe to build the new columns.
The rest isn't completely clear: Either use df = pd.concat([df, df2], axis=1), or df.merge(df2, ...) to merge on month (with .reset_index() without drop=True).
Result for the sample dataframe
df = pd.DataFrame({
"collection_amount": [100, 200, 300],
"25%_coll": [1, 0, 1], "75%_coll": [0, 1, 1],
"month": [4, 5, 6]
})
is
new_cols month_4_25%_coll month_4_75%_coll month_5_25%_coll \
0 100 0 0
1 0 0 0
2 0 0 0
new_cols month_5_75%_coll month_6_25%_coll month_6_75%_coll
0 0 0 0
1 200 0 0
2 0 300 300
Say I have two classes with a handful of students each, and I want to think of the possible pairings in each class. In my original data, I have one line per student.
What's the easiest way in Pandas to turn this dataset
Class Students
0 1 A
1 1 B
2 1 C
3 1 D
4 1 E
5 2 F
6 2 G
7 2 H
Into this new stuff?
Class Students
0 1 A,B
1 1 A,C
2 1 A,D
3 1 A,E
4 1 B,C
5 1 B,D
6 1 B,E
7 1 C,D
6 1 B,E
8 1 C,D
9 1 C,E
10 1 D,E
11 2 F,G
12 2 F,H
12 2 G,H
Try This:
import itertools
import pandas as pd
cla = [1, 1, 1, 1, 1, 2, 2, 2]
s = ["A", "B", "C", "D" , "E", "F", "G", "H"]
df = pd.DataFrame(cla, columns=["Class"])
df['Student'] = s
def create_combos(list_students):
combos = itertools.combinations(list_students, 2)
str_students = []
for i in combos:
str_students.append(str(i[0])+","+str(i[1]))
return str_students
def iterate_df(class_id):
df_temp = df.loc[df['Class'] == class_id]
list_student = list(df_temp['Student'])
list_combos = create_combos(list_student)
list_id = [class_id for i in list_combos]
return list_id, list_combos
list_classes = set(list(df['Class']))
new_id = []
new_combos = []
for idx in list_classes:
tmp_id, tmp_combo = iterate_df(idx)
new_id += tmp_id
new_combos += tmp_combo
new_df = pd.DataFrame(new_id, columns=["Class"])
new_df["Student"] = new_combos
print(new_df)
I'm using dataframe. How to split dict list to many columns?
This is for a junior dataprocessor. In the past, I've tried on many ways.
import pandas as pd
l = [{'a':1,'b':2},{'a':3,'b':4}]
data = [{'key1':'x','key2':'y','value':l}]
df = pd.DataFrame(data)
data1 = {'key1':['x','x'],'key2':['y','y'],'a':[1,3],'b':[2,4]}
df1 = pd.DataFrame(data1)
df1 is what I need.
comprehension
d1 = df.drop('value', axis=1)
co = d1.columns
d2 = df.value
pd.DataFrame([
{**dict(zip(co, tup)), **d}
for tup, D in zip(zip(*map(d1.get, d1)), d2)
for d in D
])
a b key1 key2
0 1 2 x y
1 3 4 x y
Explode
See post on explode
This is a tad different but close
idx = df.index.repeat(df.value.str.len())
val = np.concatenate(df.value).tolist()
d0 = pd.DataFrame(val)
df.drop('value', axis=1).loc[idx].reset_index(drop=True).join(d0)
a b key1 key2
0 1 2 x y
1 3 4 x y
I have the following dataframe
import pandas as pd
d = {
'ID':[1,2,3,4,5],
'Price1':[5,9,4,3,9],
'Price2':[9,10,13,14,18],
'Type':['A','A','B','C','D'],
}
df = pd.DataFrame(data = d)
df
For applying the formula without condition I use the following code
df = df.eval(
'Price = (Price1*Price1)/2'
)
df
How to do the formulas without splitting the dataframe which had different conditions
Need a new column called Price_on_type
The formula is differing for each type
For type A the formula for Price_on_type = Price1+Price1
For type B the formula for Price_on_type = (Price1+Price1)/2
For type C the formula for Price_on_type = Price1
For type D the formula for Price_on_type = Price2
Expected Output:
import pandas as pd
d = {
'ID':[1,2,3,4,5],
'Price1':[5,9,4,3,9],
'Price2':[9,10,13,14,18],
'Price':[12.5,40.5, 8.0, 4.5, 40.5],
'Price_on_type':[14,19,8.0,3,18],
}
df = pd.DataFrame(data = d)
df
You can use numpy.select:
masks = [df['Type'] == 'A',
df['Type'] == 'B',
df['Type'] == 'C',
df['Type'] == 'D']
vals = [df.eval('(Price1*Price1)'),
df.eval('(Price1*Price1)/2'),
df['Price1'],
df['Price2']]
Or:
vals = [df['Price1'] + df['Price2'],
(df['Price1'] + df['Price2']) / 2,
df['Price1'],
df['Price2']]
df['Price_on_type'] = np.select(masks, vals)
print (df)
ID Price1 Price2 Type Price_on_type
0 1 5 9 A 14.0
1 2 9 10 A 19.0
2 3 4 13 B 8.5
3 4 3 14 C 3.0
4 5 9 18 D 18.0
If your data is not too big, using apply with custom function on axis=1
def Prices(x):
dict_sw = {
'A': x.Price1 + x.Price2,
'B': (x.Price1 + x.Price2)/2,
'C': x.Price1,
'D': x.Price2,
}
return dict_sw[x.Type]
In [239]: df['Price_on_type'] = df.apply(Prices, axis=1)
In [240]: df
Out[240]:
ID Price1 Price2 Type Price_on_type
0 1 5 9 A 14.0
1 2 9 10 A 19.0
2 3 4 13 B 8.5
3 4 3 14 C 3.0
4 5 9 18 D 18.0
Or using the trick convert True to 1 and False to 0
df['Price_on_type'] = \
(df.Type == 'A') * (df.Price1 + df.Price2) + \
(df.Type == 'B') * (df.Price1 + df.Price2)/2 + \
(df.Type == 'C') * df.Price1 + \
(df.Type == 'D') * df.Price2
Out[308]:
ID Price1 Price2 Type Price_on_type
0 1 5 9 A 14.0
1 2 9 10 A 19.0
2 3 4 13 B 8.5
3 4 3 14 C 3.0
4 5 9 18 D 18.0
I want to create a row number series - but not override my date index.
I can do it with a loop but I think there must be an easier way?
_cnt = [ ]
for i in range ( len ( df ) ):
_cnt.append ( i )
df[ 'row' ] = _cnt
Thanks.
Probably the easiest way:
df['row'] = range(len(df))
>>> df
0 1
0 0.444965 0.993382
1 0.001578 0.174628
2 0.663239 0.072992
3 0.664612 0.291361
4 0.486449 0.528354
>>> df['row'] = range(len(df))
>>> df
0 1 row
0 0.444965 0.993382 0
1 0.001578 0.174628 1
2 0.663239 0.072992 2
3 0.664612 0.291361 3
4 0.486449 0.528354 4