PostgreSQL - storing data that never changes - sql

Is there a way in PostgreSQL to mark a table as storing data that will never change after insertion, thus improving performance? One example where this could help is Index-Only Scans and Covering Indexes:
However, for seldom-changing data there is a way around this problem.
PostgreSQL tracks, for each page in a table's heap, whether all rows
stored in that page are old enough to be visible to all current and
future transactions. This information is stored in a bit in the
table's visibility map. An index-only scan, after finding a candidate
index entry, checks the visibility map bit for the corresponding heap
page. If it's set, the row is known visible and so the data can be
returned with no further work. If it's not set, the heap entry must be
visited to find out whether it's visible, so no performance advantage
is gained over a standard index scan
If PostgreSQL knew that the data in a table never changes the heap entries would never have to be visited in index-only scans.

If you have data that truly never change, run VACUUM (FREEZE) on the table. If there is no concurrent long-running transaction, that will mark all blocks in the visibility map as “all-frozen” and “all-visible”. Then you will get index-only scans and anti-wraparound autovacuum won't have to do any work on the table.

This is a little hard to follow in the documentation, but basically you need to vacuum the table after it has been created. Then if there are no changes (and no locks), no worries.
The documentation does explain that vacuuming updates the visibility map:
PostgreSQL's VACUUM command has to process each table on a regular basis for several reasons:
. . .
To update the visibility map, which speeds up index-only scans.

Related

Is it possible to do usual atomic INSERT operation but update Indexes asynchronously?

indexes make read fast but write slower. But why can't you have single writes and have db add indexes asynchronously with time, also cache in the INSERT until it's indexed?
Is there any database like that?
Converting my comments to an answer:
indexes make read fast but write slower
That's an oversimplification and it's also misleading.
Indexes make data lookups faster because the DBMS doesn't need to do a table-scan to find rows matching a predicate (the WHERE part of a query). Indexes don't make "reads" any faster (that's entirely dependent on the characteristics of your disk IO) and when used improperly they can sometimes even make queries slower (for reasons I won't get into).
I want to stress that the additional cost of writing to a single index, or even multiple indexes, when executing a DML statement (INSERT/UPDATE/DELETE/MERGE/etc) is negligible, really! (In actuality: foreign-key constraints are a much bigger culprit - and I note you can practically eliminate the cost of foreign-key constraint checking by adding additional indexes!). Indexes are primarily implemented using B-trees (a B-tree is essentially like a binary-tree, except rather than each node having only 2 children it can have many children because each tree-node comes with unused space for all those child node pointers, so inserting into the middle of a B-tree won't require data to be moved-around on-disk unlike with other kinds of trees, like a heap-tree).
Consider this QA where a Postgres user (like yourself) reports inserting 10,000 rows into a table. Without an index it took 78ms, with an index it took 84ms, that's only a 7.5% increase, which at that scale (6ms!) is so small it may as well be a rounding error or caused by IO scheduling. That should be proof enough it shouldn't be something you should worry about without actual hard data showing it's a problem for you and your application.
I assume you have this negative impression about indexes after reading an article like this one, which certainly gives the impression that "indexes are bad" - but while the points mentioned in that article are not wrong, there's a LOT of problems with that article so you shouldn't take it dogmatically. (I'll list my concerns with that article in the footer).
But why can't you have single writes and have db add indexes asynchronously with time
By this I assume you mean you'd like a DMBS to do a single-row INSERT by simply appending a new record to the end of a table and then immediately returning and then at an arbitrary point later the DBMS' housekeeping system would update the indexes afterwards.
The problem with that is that it breaks the A, C, and I parts of the the A.C.I.D. model.
Indexes are used for more than just avoiding table-scans: they're also used to store copies of table data for the benefit of queries that would use the index and which also need (for example) a small subset of the table's data, this significantly reduces disk reads. For this reason, RDBMS (and ISO SQL) allow indexes to include non-indexed data using the INCLUDES clause.
Consider this scenario:
CREATE INDEX IX_Owners ON cars ( ownerId ) INCLUDE ( colour );
CREATE INDEX IX_Names ON people ( name ) INCLUDE ( personId, hairColour );
GO;
SELECT
people.name,
people.hairColour,
cars.colour
FROM
cars
INNER JOIN people ON people.personId = cars.ownerId
WHERE
people.name LIKE 'Steve%'
The above query will not need to read either the cars or people tables on-disk. The DBMS will be able to fully answer the query using data only in the index - which is great because indexes tend to exist in a small number of pages on-disk which tend to be in proximal-locality which is good for performance because it means it will use sequential IO which scales much better than random IO.
The RDBMS will perform a string-prefix index-scan of the people.IX_Names index to get all of the personId (and hairColour) values, then it will look-up those personId values in the cars.IX_Owners index and be able to get the car.colour from the copy of the data inside the IX_Owners index without needing to read the tables directly.
Now, assuming that another database client has just completed inserted a load of records into the cars and/or people table with a COMMIT TRANSACTION just for good measure, and the RDMBS uses your idea of only updating indexes later whenever it feels like it, then if that same database client re-runs the query from above it would return stale data (i.e. wrong data) because the query uses the index, but the index is old.
In addition to using index tree nodes to store copies of table data to avoid non-proximal disk IO, many RDBMS also use index-trees to store entire copies - even multiple copies of table data, to enable other scenarios, such as columnar data storage and indexed-VIEWs - both of these features absolutely require that indexes are updated atomically with table data.
Is there any database like that?
Yes, they exist - but they're not widely used (or they're niche) because for the vast majority of applications it's entirely undesirable behaviour for the reasons described above.
There are distributed databases that are designed around eventual consistency, but clients (and entire application code) needs to be designed with that in-mind, and it's a huge PITA to have to redesign a data-centric application to support eventual-consistency which is why you only really see them being used in truly massive systems (like Facebook, Google, etc) where availability (uptime) is more important than users seeing stale-data for a few minutes.
Footnote:
Regarding this article: https://use-the-index-luke.com/sql/dml/insert
The number of indexes on a table is the most dominant factor for insert performance. The more indexes a table has, the slower the execution becomes. The insert statement is the only operation that cannot directly benefit from indexing because it has no where clause.
I disagree. I'd argue that foreign-key constraints (and triggers) are far more likely to have a larger detrimental effect on DML operations.
Adding a new row to a table involves several steps. First, the database must find a place to store the row. For a regular heap table—which has no particular row order—the database can take any table block that has enough free space. This is a very simple and quick process, mostly executed in main memory. All the database has to do afterwards is to add the new entry to the respective data block.
I agree with this.
If there are indexes on the table, the database must make sure the new entry is also found via these indexes. For this reason it has to add the new entry to each and every index on that table. The number of indexes is therefore a multiplier for the cost of an insert statement.
This is true, but I don't know if I agree that it's a "multiplier" of the cost of an insert.
For example, consider a table with hundreds of nvarchar(1000) columns and several int columns - and there's separate indexes for each int column (with no INCLUDE columns). If you're inserting 100x megabyte-sized rows all-at-once (using an INSERT INTO ... SELECT FROM statement) the cost of updating those int indexes is very likely to require much less IO than the table data.
Moreover, adding an entry to an index is much more expensive than inserting one into a heap structure because the database has to keep the index order and tree balance. That means the new entry cannot be written to any block—it belongs to a specific leaf node. Although the database uses the index tree itself to find the correct leaf node, it still has to read a few index blocks for the tree traversal.
I strongly disagree with this, especially the first sentence: "adding an entry to an index is much more expensive than inserting one into a heap structure".
Indexes in RDBMS today are invariably based on B-trees, not binary-trees or heap-trees. B-trees are essentially like binary-trees except each node has built-in space for dozens of child node pointers and B-trees are only rebalanced when a node fills its internal child pointer list, so a B-tree node insert will be considerably cheaper than the article is saying because each node will have plenty of empty space for a new insertion without needing to re-balance itself or any other relatively expensive operation (besides, DBMS can and do index maintenance separately and independently of any DML statement).
The article is correct about how the DBMS will need to traverse the B-tree to find the node to insert into, but index nodes are efficently arranged on-disk, such as keeping related nodes in the same disk page which minimizes index IO reads (assuming they aren't already loaded into memory first). If an index tree is too big to store in-memory the RDBMS can always keep a "meta-indexes" in-memory so it could potentially instantly find the correct B-tree index without needing to traverse the B-tree from the root.
Once the correct leaf node has been identified, the database confirms that there is enough free space left in this node. If not, the database splits the leaf node and distributes the entries between the old and a new node. This process also affects the reference in the corresponding branch node as that must be duplicated as well. Needless to say, the branch node can run out of space as well so it might have to be split too. In the worst case, the database has to split all nodes up to the root node. This is the only case in which the tree gains an additional layer and grows in depth.
In practice this isn't a problem, because the RDBMS's index maintenance will ensure there's sufficient free space in each index node.
The index maintenance is, after all, the most expensive part of the insert operation. That is also visible in Figure 8.1, “Insert Performance by Number of Indexes”: the execution time is hardly visible if the table does not have any indexes. Nevertheless, adding a single index is enough to increase the execute time by a factor of a hundred. Each additional index slows the execution down further.
I feel the article is being dishonest by suggesting (implying? stating?) that index-maintenance happens with every DML. This is not true. This may have been the case with some early dBase-era databases, but this is certainly not the case with modern RDBMS like Postgres, MS SQL Server, Oracle and others.
Considering insert statements only, it would be best to avoid indexes entirely—this yields by far the best insert performance.
Again, this claim in the article is not wrong, but it's basically saying if you want a clean and tidy house you should get rid of all of your possessions. Indexes are a fact of life.
However tables without indexes are rather unrealistic in real world applications. You usually want to retrieve the stored data again so that you need indexes to improve query speed. Even write-only log tables often have a primary key and a respective index.
Indeed.
Nevertheless, the performance without indexes is so good that it can make sense to temporarily drop all indexes while loading large amounts of data—provided the indexes are not needed by any other SQL statements in the meantime. This can unleash a dramatic speed-up which is visible in the chart and is, in fact, a common practice in data warehouses.
Again, with modern RDBMS this isn't necessary. If you do a batch insert then a RDBMS won't update indexes until after the table-data has finished being modified, as a batch index update is cheaper than many individual updates. Similarly I expect that multiple DML statements and queries inside an explicit BEGIN TRANSACTION may cause an index-update deferral provided no subsequent query in the transaction relies on an updated index.
But my biggest issue with that article is that the author is making these bold claims about detrimental IO performance without providing any citations or even benchmarks they've run themselves. It's even more galling that they posted a bar-chart with arbitrary numbers on, again, without any citation or raw benchmark data and instructions for how to reproduce their results. Always demand citations and evidence from anything you read making claims: because the only claims anyone should accept without evidence are logical axioms - and a quantitative claim about database index IO cost is not a logical axiom :)
For PostgreSQL GIN indexes, there is the fastupdate feature. This stores new index entries into a unordered unconsolidated area waiting for some other process to file them away into the main index structure. But this doesn't directly match up with what you want. It is mostly designed so that the index updates are done in bulk (which can be more IO efficient), rather than in the background. Once the unconsolidated area gets large enough, then a foreground process might take on the task of filing them away, and it can be hard to tune the settings in a way to get this to always be done by a background process instead of a foreground process. And it only applies to GIN indexes. (With the use of the btree_gin extension, you can create GIN indexes on regular scalar columns rather than the array-like columns it usually works with.) While waiting for the entries to be consolidated, every query will have to sequential scan the unconsolidated buffer area, so delaying the updates for the sake of INSERT can come at a high cost for SELECTs.
There are more general techniques to do something like this, such as fractal tree indexes. But these are not implemented in PostgreSQL, and wherever they are implemented they seem to be proprietary.

Oracle 10g Full table scan(parallel access) 100x times faster than index access by rowid

There was a query in production which was running for several hours(5-6) hours. I looked into its execution plan, and found that it was ignoring a parallel hint on a huge table. Reason - it was using TABLE ACCESS BY INDEX ROWID. So after I added a /*+ full(huge_table) */ hint before the parallel(huge_table) hint, the query started running in parallel, and it finished in less than 3 minutes. What I could not fathom was the reason for this HUGE difference in performance.
The following are the advantages of parallel FTS I can think of:
Parallel operations are inherently fast if you have more idle CPUs.
Parallel operations in 10g are direct I/O which bypass
buffer cache which means there is no risk of "buffer busy waits" or
any other contention for buffer cache.
Sure there are the above advantages but then again the following disadvantages are still there:
Parallel operations still have to do I/O, and this I/O would be more than what we have for TABLE ACCESS BY INDEX ROWID as the entire table is scanned and is costlier(all physical reads)
Parallel operations are not very scalable which means if there aren't enough free resources, it is going to be slow
With the above knowledge at hand, I see only one reason that could have caused the poor performance for the query when it used ACCESS BY INDEX ROWID - some sort of contention like "busy buffer waits". But it doesn't show up on the AWR top 5 wait events. The top two events were "db file sequential read" and "db file scattered read". Is there something else that I have missed to take into consideration? Please enlighten me.
First, without knowing anything about your data volumes, statistics, the selectivity of your predicates, etc. I would guess that the major benefit you're seeing is from doing a table scan rather than trying to use an index. Indexes are not necessarily fast and table scans are not necessarily slow. If you are using a rowid from an index to access a row, Oracle is limited to doing single block reads (sequential reads in Oracle terms) and that it's going to have to read the same block many times if the block has many rows of interest. A full table scan, on the other hand, can do nice, efficient multiblock reads (scattered reads in Oracle terms). Sure, an individual single block read is going to be more efficient than a single multiblock read but the multiblock read is much more efficient per byte read. Additionally, if you're using an index, you've potentially got to read a number of blocks from the index periodically to find out the next rowid to read from the table.
You don't actually need to read all that much data from the table before a table scan is more efficient than an index. Depending on a host of other factors, the tipping point is probably in the 10-20% range (that's a very, very rough guess). Imagine that you had to get a bunch of names from the phone book and that the phone book had an index that included the information you're filtering on and the page that the entry is on. You could use an index to find the name of a single person you want to look at, flip to the indicated page, record the information, flip back to the index, find the next name, flip back, etc. Or you could simply start at the first name, scan until you find a name of interest, record the information, and continue the scan. It doesn't take too long before you're better off ignoring the index and just reading from the table.
Adding parallelism doesn't reduce the amount of work your query does (in fact, adding in parallel query coordination means that you're doing more work). It's just that you're doing that work over a shorter period of elapsed time by using more of the server's available resources. If you're running the query with 6 parallel slaves, that could certainly allow the query to run 5 times faster overall (parallel query obviously scales a bit less than linearly because of overheads). If that's the case, you'd expect that doing a table scan made the query 20 times faster and adding parallelism added another factor of 5 to get your 100x improvement.

Index not used Postgres

Tracking indexes and analyzing the tables on which index add, we encounter some situations:
some of our tables have index, but when I execute a query with a clause where on index field, doesn't account in your idx_scan field respective. Same relname and schemaname, so, I couldn't be wrong.
Testing more, I deleted and create the table again, after that the query returned to account the idx_scan.
That occurred with another tables too, we executed some queries with indexes and didn't account idx_scan field, only in seq_scan and even if I create another field in the same table with index, this new field doesn't count idx_scan.
Whats the problem with these tables? What do we do wrong? Only if I create a new table with indexes that account in idx_scan, just in an old table that has wrong.
We did migration sometimes with this database, maybe it can be the problem? Happened on localhost and server online.
Another event that we saw, some indexes were accounted, idx_scan > 0, and when execute query select, does not increase idx_scan again, the number was fixed and just increase seq_scan.
I believe those problems can be related.
I appreciate some help, it's a big mystery prowling our DB and have no idea what the problem can be.
A couple suggestions (and what to add to your question).
The first is that index scans are not always favored to to sequential scans. For example, if your table is small or the planner estimates that most pages will need to be fetched, an index scan will be omitted in favor of a sequential scan.
Remember: no plan beats retrieving a single page off disk and sequentially running through it.
Similarly if you have to retrieve, say, 50% of the pages of a relation, doing an index scan is going to trade somewhat less disk/IO total for a great deal more random disk/IO. It might be a win if you use SSD's but certainly not with conventional hard drives. After all you don't really want to be waiting for platters to turn. If you are using SSD's you can tweak planner settings accordingly.
So index vs sequential scan is not the end of the story. The question is how many rows are retrieved, how big the tables are, what percentage of disk pages are retrieved, etc.
If it really is picking a bad plan (rather than a good plan that you didn't consider!) then the question becomes why. There are ways of setting statistics targets but these may not be really helpful.
Finally the planner really can't choose an index in some cases where you might like it to. For example, suppose I have a 10 million row table with records spanning 5 years (approx 2 million rows per year on average). I would like to get the distinct years. I can't do this with a standard query and index, but I can build a WITH RECURSIVE CTE to essentially execute the same query once for each year and that will use an index. Of course you had better have an index in that case or WITH RECURSIVE will do a sequential scan for each year which is certainly not what you want!
tl;dr: It's complicated. You want to make sure this is really a bad plan before jumping to conclusions and then if it is a bad plan see what you can do about it depending on your configuration.

To what degree can effective indexing overcome performance issues with VERY large tables?

So, it seems to me like a query on a table with 10k records and a query on a table with 10mil records are almost equally fast if they are both fetching roughly the same number of records and making good use of simple indexes(auto increment, record id type indexed field).
My question is, will this extend to a table with close to 4 billion records if it is indexed properly and the database is set up in such a way that queries always use those indexes effectively?
Also, I know that inserting new records in to a very large indexed table can be very slow because all the indexes have to be recalculated, if I add new records only to the end of the table can I avoid that slow down, or will that not work because the index is a binary tree and a large chunk of the tree will still have to be recalculated?
Finally, I looked around a bit for a FAQs/caveats about working with very large tables, but couldn't really find one, so if anyone knows of something like that, that link would be appreciated.
Here is some good reading about large tables and the effects of indexing on them, including cost/benefit, as you requested:
http://www.dba-oracle.com/t_indexing_power.htm
Indexing very large tables (as with anything database related) depends on many factors, incuding your access patterns, ratio of Reads to Writes and size of available RAM.
If you can fit your 'hot' (i.e. frequently accessed index pages) into memory then accesses will generally be fast.
The strategy used to index very large tables, is using partitioned tables and partitioned indexes. BUT if your query does not join or filter on the partition key then there will no improvement in performance over an unpartitioned table i.e. no partition elimination.
SQL Server Database Partitioning Myths and Truths
Oracle Partitioned Tables and Indexes
It's very important to keep your indexes as narrow as possible.
Kimberly Tripp's The Clustered Index Debate Continues...(SQL Server)
Accessing the data via a unique index lookup will slow down as the table gets very large, but not by much. The index is stored as a B-tree structure in Postgres (not binary tree which only has two children per node), so a 10k row table might have 2 levels whereas a 10B row table might have 4 levels (depending on the width of the rows). So as the table gets ridiculously large it might go to 5 levels or higher, but this only means one extra page read so is probably not noticeable.
When you insert new rows, you cant control where they are inserted in the physical layout of the table so I assume you mean "end of the table" in terms of using the maximum value being indexed. I know Oracle has some optimisations around leaf block splitting in this case, but I dont know about Postgres.
If it is indexed properly, insert performance may be impacted more than select performance. Indexes in PostgreSQL have vast numbers of options which can allow you to index part of a table or the output of an immutable function on tuples in the table. Also size of the index, assuming it is usable, will affect speed much more slowly than will the actual scan of the table. The biggest difference is between searching a tree and scanning a list. Of course you still have disk I/O and memory overhead that goes into index usage, and so large indexes don't perform as well as they theoretically could.

When and why do I reindex a MSDE database

I understand that indexes should get updated automatically but when that does not happen we need to reindex.
My question is (1) Why this automatic udate fails or why an index become bad?
(2) How do I prgramatically know which table/index needs re-indexing at a point of time?
Indexes' statistics may be updated automatically. I do not believe that the indexes themselves would be rebuilt automatically when needed (although there may be some administrative feature that allows such a thing to take place).
Indexes associated with tables which receive a lot of changes (new rows, updated rows and deleted rows) may have their indexes that become fragmented, and less efficient. Rebuilding the index then "repacks" the index in a contiguous section of storage space, a bit akin to the way defragmentation of the file system makes file access faster...
Furthermore the Indexes (on several DBMS) have a FILL_FACTOR parameter, which determine how much extra space should be left in each node for growth. For example if you expect a given table to grow by 20% next year, by declaring the fill factor around 80%, the amount of fragmentation of the index should be minimal during the first year (there may be some if these 20% of growth are not evenly distributed,..)
In SQL Server, It is possible to query properties of the index that indicate its level of fragmentation, and hence it possible need for maintenance. This can be done by way of the interactive management console. It is also possible to do this programatically, by way of sys.dm_db_index_physical_stats in MSSQL 2005 and above (maybe even older versions?)