I trained a segmentation model in tensorflow and I need to print the time spent for training the dataset after finishing the training.
I am trying to find time for each epoch and then sum all times per number of epochs.
You can use the TensorFlow Time Profiler to measure the time spent for training a model in TensorFlow.
This tool allows you to measure the time spent for each step of the training process, including the time spent for each epoch.
You can then sum up all of these times to get an overall estimate of the time spent for training your model.
I want to find the actual TFLOPs of my GPU while doing DeepLearning.
Is there any way to find the floating point operations necessary for training a model like ResNet50?
I found some ways online to determine the flops for inference (one image), but I'm not really sure how that would transfer for training.
I'm thinking it will be flops of model * number of images * epochs, but this way I'm not taking into account the back propagation.
I found some benchmarks that outputs the number of images processed / second, would this be helpful?
I was writing a neural net to train Resnet on CIFAR-10 dataset.
The paper Deep Residual Learning For Image Recognition mentions training for around 60,000 epochs.
I was wondering - what exactly does an epoch refer to in this case? Is it a single pass through a minibatch of size 128 (which would mean around 150 passes through the entire 50000 image training set?
Also how long is this expected to take to train(assume CPU only, 20-layer or 32-layer ResNet)? With the above definition of an epoch, it seems it would take a very long time...
I was expecting something around 2-3 hours only, which is equivalent to about 10 passes through the 50000 image training set.
The paper never mentions 60000 epochs. An epoch is generally taken to mean one pass over the full dataset. 60000 epochs would be insane. They use 64000 iterations on CIFAR-10. An iteration involves processing one minibatch, computing and then applying gradients.
You are correct in that this means >150 passes over the dataset (these are the epochs). Modern neural network models often take days or weeks to train. ResNets in particular are troublesome due to their massive size/depth. Note that in the paper they mention training the model on two GPUs which will be much faster than on the CPU.
If you are just training some models "for fun" I would recommend scaling them down significantly. Try 8 layers or so; even this might be too much. If you are doing this for research/production use, get some GPUs.
I am training a neural network using Tensorflow's object detetction API to detect cars. I used the following youtube video to learn and execute the process.
https://www.youtube.com/watch?v=srPndLNMMpk&t=65s
Part 1 to 6 of his series.
Now in his video, he has mentioned to stop the training when the loss value reaches ~1 or below on an average and that it would take about 10000'ish' steps.
In my case, it is 7500 steps right now and the loss values keep fluctuating from 0.6 to 1.3.
Alot of people complained in the comment section about false positives on this series but I think this happened because of the unnecessary prolonged process of training (because they din't know maybe when to stop ?) which caused overfitting!
I would like to avoid this problem. I would like to have not the most optimum weights but fairly optimum weights while avoiding false detection or overfitting. I am also observing 'Total Loss' section of Tensorboard. It fluctuates between 0.8 to 1.2. When do I stop the training process?
I would also like to know in general, which factors does the 'stopping of training' depend on? is it always about the average loss of 1 or less?
Additional information:
My training data has ~300 images
Test data ~ 20 images
Since I am using the concept of transfer learning, I chose ssd_mobilenet_v1.model.
Tensorflow version 1.9 (on CPU)
Python version 3.6
Thank you!
You should use a validation test, different from the training set and the test set.
At each epoch, you compute the loss of both training and validation set.
If the validation loss begin to increase, stop your training. You can now test your model on your test set.
The Validation set size is usually the same as the test one. For example, training set is 70% and both validation and test set are 15% each.
Also, please note that 300 images in your dataset seems not enough. You should increase it.
For your other question :
The loss is the sum of your errors, and thus, depends on the problem, and your data. A loss of 1 does not mean much in this regard. Never rely on it to stop your training.
When I execute the cifar10 model as described at https://www.tensorflow.org/tutorials/deep_cnn I achieve 86% accuracy after approx 4 hours using a single GPU , when I utilize 2 GPU's the accuracy drops to 84% but reaching 84% accuracy is faster on 2 GPU's than 1.
My intuition is
that average_gradients function as defined at https://github.com/tensorflow/models/blob/master/tutorials/image/cifar10/cifar10_multi_gpu_train.py returns a less accurate gradient value as an average of gradients will be less accurate than the actual gradient value.
If the gradients are less accurate then the parameters than control the function that is learned as part of training is less accurate. Looking at the code (https://github.com/tensorflow/models/blob/master/tutorials/image/cifar10/cifar10_multi_gpu_train.py) why is averaging the gradients over multiple GPU's less accurate than computing the gradient on a single GPU ?
Is my intuition of averaging the gradients producing a less accurate value correct ?
Randomness in the model is described as :
The images are processed as follows:
They are cropped to 24 x 24 pixels, centrally for evaluation or randomly for training.
They are approximately whitened to make the model insensitive to dynamic range.
For training, we additionally apply a series of random distortions to artificially increase the data set size:
Randomly flip the image from left to right.
Randomly distort the image brightness.
Randomly distort the image contrast.
src : https://www.tensorflow.org/tutorials/deep_cnn
Does this have an effect on training accuracy ?
Update :
Attempting to investigate this further, the loss function value training with different number of GPU's.
Training with 1 GPU : loss value : .7 , Accuracy : 86%
Training with 2 GPU's : loss value : .5 , Accuracy : 84%
Shouldn't the loss value be lower for higher for higher accuracy, not vice versa ?
In the code you linked, using the function average_gradient with 2 GPUs is exactly equivalent (1) to simply using 1 GPU with twice the batch size.
You can see it in the definition:
grad = tf.concat(axis=0, values=grads)
grad = tf.reduce_mean(grad, 0)
Using a larger batch size (given the same number of epochs) can have any kind of effect on your results.
Therefore, if you want to do exactly equivalent (1) calculations in 1-GPU or 2-GPU cases, you may want to halve the batch size in the latter case. (People sometimes avoid doing it, because smaller batch sizes may also make the computation on each GPU slower, in some cases)
Additionally, one needs to be careful with learning rate decay here. If you use it, you want to make sure the learning rate is the same in the nth epoch in both 1-GPU and 2-GPU cases -- I'm not entirely sure this code is doing the right thing here. I tend to print the learning rate in the logs, something like
print sess.run(lr)
should work here.
(1) Ignoring issues related to pseudo-random numbers, finite precision or data set sizes not divisible by the batch size.
There is a decent discussion of this here (not my content). Basically when you distribute SGD, you have to communicate gradients back and forth somehow between workers. This is inherently imperfect, and so your distributed SGD typically diverges from a sequential, single-worker SGD at least to some degree. It is also typically faster, so there is a trade off.
[Zhang et. al., 2015] proposes one method for distributed SGD called elastic-averaged SGD. The paper goes through a stability analysis characterizing the behavior of the gradients under different communication constraints. It gets a little heavy, but it might shed some light on why you see this behavior.
Edit: regarding whether the loss should be lower for the higher accuracy, it is going to depend on a couple of things. First, I am assuming that you are using softmax cross-entropy for your loss (as stated in the deep_cnn tutorial you linked), and assuming accuracy is the total number of correct predictions divided by the total number of samples. In this case, a lower loss on the same dataset should correlate to a higher accuracy. The emphasis is important.
If you are reporting loss during training but then report accuracy on your validation (or testing) dataset, it is possible for these two to be only loosely correlated. This is because the model is fitting (minimizing loss) to a certain subset of your total samples throughout the training process, and then tests against new samples that it has never seen before to verify that it generalizes well. The loss against this testing/validation set could be (and probably is) higher than the loss against the training set, so if the two numbers are being reported from different sets, you may not be able to draw comparisons like "loss for 1 GPU case should be lower since its accuracy is lower".
Second, if you are distributing the training then you are calculating losses across multiple workers (I believe), but only one accuracy at the end, again against a testing or validation set. Maybe the loss being reported is the best loss seen by any one worker, but overall the average losses were higher.
Basically I do not think we have enough information to decisively say why the loss and accuracy do not seem to correlate the way you expect, but there are a number of ways this could be happening, so I wouldn't dismiss it out of hand.
I've also encountered this issue.
See Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour from Facebook which addresses the same issue. The suggested solution is simply to scale up the learning rate by k (after some reasonable warm-up epochs) for k GPUs.
In practice I've found out that simply summing up the gradients from the GPUs (rather than averaging them) and using the original learning rate sometimes does the job as well.