On the iterative implementation of mosekopt for large linear programs - mosek

I have to solve a linear program with a very large number of constraints. I use MOSEK (mosekopt, with MSK_IPAR_INTPNT_BASIS set equal to MSK_BI_NEVER to save time).
The solver takes time to solve the program due to the large dimension.
I thought about manually coding the following iterative procedure:
Take a random subset of constraints and solve the restricted linear program.
If a solution of the restricted linear program does not exist, stop.
If a solution of the restricted linear program exists, check if it is a solution of the original linear program. If yes, stop. If not, repeat from 1. with a larger set of constraints that includes the constraints of this iteration.
The procedure does not seem to produce a notable saving of time. I wonder whether this is because 1.,2.,3. are essentially what the solver does without needing my input. Could you advise?
Could I do improve things if, when moving from 3. to 1., I supply to mosekopt the old solution of the restricted linear program?

This may or may not be faster, than using Mosek on the complete problem. At least theoretical your approach is inferior.
You say nothing of the dimension of the problem that would be interesting to know.
Or how long it takes to solve the complete problem.
One issue tricky is how many and which constraints you are adding in 3. That will be very important.

Related

GUROBI only uses single core to setup problem with cvxpy (python)

I have a large MILP that I build with cvxpy and want to solve with GUROBI. When I give use the solve() function of cvxpy it take a really really really long time to setup and does not start solving for hours. Whilest doing that only 1 core of my cluster is being used. It is used for 100%. I would like to use multiple cores to build the model so that the process of building the model does not take so long. Running grbprobe also shows that gurobi knows about the other cores and for solving the problem it uses multiple cores.
I have tried to run with different flags i.e. turning presolve off and on or giving the number of Threads to be used (this seemed like i didn't even for the solving.
I also have reduce the number of constraints in the problem and it start solving much faster which means that this is definitively not a problem of the model itself.
The problem in it's normal state should have 2200 constraints i reduce it to 150 and it took a couple of seconds until it started to search for a solution.
The problem is that I don't see anything since it takes so long to get the ""set username parameters"" flag and I don't get any information on what the computer does in the mean time.
Is there a way to tell GUROBI or CVXPY that it can take more cpus for the build-up?
Is there another way to solve this problem?
Sorry. The first part of the solve (cvxpy model generation, setup, presolving, scaling, solving the root, preprocessing) is almost completely serial. The parallel part is when it really starts working on the branch-and-bound tree. For many problems, the parallel part is by far the most expensive, but not for all.
This is not only the case for Gurobi. Other high-end solvers have the same behavior.
There are options to do less presolving and preprocessing. That may get you earlier in the B&B. However, usually, it is better not to touch these options.
Running things with verbose=True may give you more information. If you have more detailed questions, you may want to share the log.

How do I handle variability of output in Anylogic?

I have been working on a simulation model for battery swapping in Anylogic. So far I have developed the simulation model, optimization experiment and parameters variation experiment.
There are no errors in the model but the output values are unsatisfactory. Small changes such as changing the step size of the decision variables results in a drastic change in the best value obtained after every experiment. Though the objective does not change much but I am concerned about the other variables that are changing with each run. Even with multiple optimization runs it is difficult to come to a conclusion.
For reference I am posting an output of parameters variation experiment here. I ran the experiment with an optimized value but I was getting feasible results (percentile > 95%) far off the expected input values. Although, the overall result is correct (decreasing percentile with increasing charging time) but it is difficult to understand the variability.
Can anyone help?enter image description here
When building a model, this is a common problem you will have when looking at high level overall outputs. You could have a model bug, but it is just as likely (if not more likely) that there is some dynamic to your system that was not clear in simple Excel spreadsheets or mental models. The DES may be telling us something truly interesting about the system behavior, but without additional outputs, there is no way to understand what that is.
A few suggestions:
Run this as a simple single scenario, where you manually update inputs. When you run this with the low range of input values and then the high range of input values, what do you see on the animation or additional outputs that is different than you expected or could explain the overall output trend? Try running several intermediate points.
Add additional output metrics. If you look at queue sizes, resource utilizations, turn-around-times, etc; do you see anything at that level that is different than expected?
Add a "replication" log. When you run a set of inputs for multiple scenarios, does any single replication stand out as an outlier? If so, re-run the scenario with that set of inputs and that random seed.
There is no substitute for understanding underlying system behavior, and without understanding those dynamics, looking at overall correlation with optimization or parameter variation experiments will often lead companies to make the wrong policies decisions.

Information about CGAL and alternatives

I'm working on a problem that will eventually run in an embedded microcontroller (ESP8266). I need to perform some fairly simple operations on linear equations. I don't need much, but do need to be able work with points and linear equations to:
Define an equations for lines either from two known points, or one
point and a gradient
Calculate a new x,y point on an equation line that is a specific distance from another point on that equation line
Drop a perpendicular onto an equation line from a point
Perform variations of cosine-rule calculations on points and triangle sides defined as equations
I've roughed up some code for this a while ago based on high school "y = mx + c" concepts, but it's flawed (it fails with infinities when lines are vertical), and currently in Scala. Since I suspect I'm reinventing a wheel that's not my primary goal, I'd like to use someone else's work for this!
I've come across CGAL, and it seems very likely it's capable of all this and more, but I have two questions about it (given that it seems to take ages to get enough understanding of this kind of huge library to actually be able to answer simple questions!)
It seems to assert some kind of mathematical perfection in it's calculations, but that's not important to me, and my system will be severely memory constrained. Does it use/offer memory efficient approximations?
Is it possible (and hopefully easy) to separate out just a limited subset of features, or am I going to find the entire library (or even a very large subset) heading into my memory limited machine?
And, I suppose the inevitable follow up: are there more suitable libraries I'm unaware of?
TIA!
The problems that you are mentioning sound fairly simple indeed, so I'm wondering if you really need any library at all. Maybe if you post your original code we could help you fix it--your problem sounds like you need to redo a calculation avoiding a division by zero.
As for your point (2) about separating a limited number of features from CGAL, giving the size and the coding style of that project, from my experience that will be significantly more complicated (if at all possible) than fixing your own code.
In case you want to try a simpler library than CGAL, maybe you could try Boost.Geometry
Regards,

Pyomo-IPOPT: solver falls into local minima, how to avoid that?

I am trying to solve an optimisation problem consisting in finding the global maximum of a high dimensional (10+) monotonic function (as in monotonic in every direction). The constraints are such that they cut the search space with planes.
I have coded the whole thing in pyomo and I am using the ipopt solver. In most cases, I am confident it converges successfully to the global optimal. But if I play a bit with the constraints I see that it sometimes converges to a local minima.
It looks like a exploration-exploitation trade-off.
I have looked into the options that can be passed to ipopt and the list is so long that I cannot understand which parameters to play with to help with the convergence to the global minima.
edit:
Two hints of a solution:
my variables used to be defined with very infinite bounds, e.g. bounds=(0,None) to move on the infinite half-line. I have enforced two finite bounds on them.
I am now using multiple starts with:
opt = SolverFactory('multistart')
results = opt.solve(self.model, solver='ipopt', strategy='midpoint_guess_and_bound')
So far this has made my happy with the convergence.
Sorry, IPOPT is a local solver. If you really want to find global solutions, you can use a global solver such as Baron, Couenne or Antigone. There is a trade-off: global solvers are slower and may not work for large problems.
Alternatively, you can help local solvers with a good initial point. Be aware that active set methods are often better in this respect than interior point methods. Sometimes multistart algorithms are used to prevent bad local optima: use a bunch of different starting points. Pyomo has some facilities to do this (see the documentation).

Gurobi resume optimization after model modification

As far as i know Gurobi resumes optimizing where it left after calling Model.Terminate() and then calling Model.Optimize() again. So I can terminate and get the best solution so far and then proceed.Now I want to do the same, but since I want to use parts of the suboptimal solution I need to set some variables to fixed values before I call Model.Optimize() again and optimize the rest of the model. How can i do this so that gurobi does not start all over again?
First, it sounds like you're describing a mixed-integer program (MIP); model modification is different for continuous optimization (linear programming, quadratic programming).
When you modify a MIP model, the tree information is no longer helpful. Instead, you must resolve the continuous (LP) relaxation and create a new branch-and-cut tree. However, the prior solution may still be used as a MIP start, which can reduce the solve time for the second model.
However, your method may be redundant with the RINS algorithm, which is an automatic feature of Gurobi MIP. You can control the behavior of RINS via the parameters RINS, SubMIPNodes and Heuristics.