I need GPU for my project. Till now I had limited use and used Colab free. Now I think I may need as much as 3 hours a day. Now it says GPU is not available because they are already taken. My question is, what effect does upgrading to Colab pro have on GPU availability? How many hours should I expect to have GPU and are these hours arbitrary chosen by me or not?
I referred Here and There but no good detail about GPU availability is given.
In Their website they tell that these limitations vary and depends on previous usage, and a precise answer might not be even available, so even an approximated answer is welcome.
Thanks.
Yeah.I had the same experience that GPU is not available in colab.
Why not try gpushare.com to run 3090 or 2080ti with free credit.
The platform supports the most popular machine learning frameworks,like TensorFlow and PyTorch,users can be fast to instantiate a VM image.
I think it's appropriate to accelerate your model training.
Related
Pretty straightforward question. I was just wondering what was doing the calculus when this option was chosen. Does it run on Goolge's CPU or on my hardware ?
I have looked on Google, Stackoverflow and Colab's Help without success finding a precise answer
Thanks :)
PS : When running a full Dense Network "without" accelarator it is approx. as fast as with TPU and a lot faster than with GPU.
Your guess is correct: None means CPU only, but on a Colab-managed cloud VM rather than your local machine. (Unless you've connected to a local Jupyter instance.
Also keep in mind that you'll need to adjust your code in order to take advantage of hardware accelerators like GPUs and TPUs.
Speedup on a GPU is often a bit magical since many frameworks automatically detect and take advantage of GPUs. Built-in support for TPUs is rare, and obtaining a speedup from TPUs will require adjusting your code.
Here it is described how to use gpu with google-colaboratory:
Simply select "GPU" in the Accelerator drop-down in Notebook Settings (either through the Edit menu or the command palette at cmd/ctrl-shift-P).
However, when I select gpu in Notebook Settings I get a popup saying:
Failed to assign a backend
No backend with GPU available. Would you like to use a runtime with no accelerator?
When I run:
import tensorflow as tf
device_name = tf.test.gpu_device_name()
if device_name != '/device:GPU:0':
raise SystemError('GPU device not found')
print('Found GPU at: {}'.format(device_name))
Of course, I get GPU device not found. It seems the description is incomplete. Any ideas what needs to be done?
You need to configure the Notebook with GPU device
Click Edit->notebook settings->hardware accelerator->GPU
You'll need to try again later when a GPU is available. The message indicates that all available GPUs are in use.
The FAQ provides additional info:
How may I use GPUs and why are they sometimes unavailable?
Colaboratory is intended for interactive use. Long-running background
computations, particularly on GPUs, may be stopped. Please do not use
Colaboratory for cryptocurrency mining. Doing so is unsupported and
may result in service unavailability. We encourage users who wish to
run continuous or long-running computations through Colaboratory’s UI
to use a local runtime.
There seems to be a cooldown on continuous training with GPUs. So, if you encounter the error dialog, try again later, and perhaps try to limit long-term training in subsequent sessions.
Add some pictures to make it clearer
My reputation is just slightly too low to comment, but here's a bit of additional info for #Bob Smith's answer re cooldown period.
There seems to be a cooldown on continuous training with GPUs. So, if you encounter the error dialog, try again later, and perhaps try to limit long-term training in subsequent sessions.
Based on my own recent experience, I believe Colab will allocate you at most 12 hours of GPU usage, after which there is roughly an 8 hour cool-down period before you can use compute resources again. In my case, I could not connect to an instance even without a GPU. I'm not entirely sure about this next bit but I think if you run say 3 instances at once, your 12 hours are depleted 3 times as fast. I don't know after what period of time the 12 hour limit resets, but I'd guess maybe a day.
Anyway, still missing a few details but the main takeaway is that if you exceed you'll limit, you'll be locked out from connecting to an instance for 8 hours (which is a great pain if you're actively working on something).
After Reset runtime didn't work, I did:
Runtime -> Reset all runtimes -> Yes
I then got a happy:
Found GPU at: /device:GPU:0
This is the precise answer to your question man.
According to a post from Colab :
overall usage limits, as well as idle timeout periods, maximum VM
lifetime, GPU types available, and other factors, vary over time.
GPUs and TPUs are sometimes prioritized for users who use Colab
interactively rather than for long-running computations, or for users
who have recently used less resources in Colab. As a result, users who
use Colab for long-running computations, or users who have recently
used more resources in Colab, are more likely to run into usage limits
and have their access to GPUs and TPUs temporarily restricted. Users
with high computational needs may be interested in using Colab’s UI
with a local runtime running on their own hardware.
Google Colab has by default tensorflow 2.0, Change it to tensorflow 1. Add the code,
%tensorflow_version 1.x
Use it before any keras or tensorflow code.
I'm a software developer and I want to experiment with AI, machine learning etc. I want to learn about the different algorithms and techniques that are readily available, how to use them and what algos are appropriate for different types of challenges. TensorFlow looks like good software to start experimenting with, so I will start with TF.
I'm not interested in image processing. I'm mostly interested in making sense of patterns in data and making predictions.
Will I be able to experiment with all of the common examples and try out all the algorithms and features of TF with just a modern i7 with 8 threads or will I definitely need a GPU in order to not wait hours between each experiment?
If I do need a GPU, would an entry-level CUDA 3.0+ GPU suffice (example Geforce 730M with 2GB RAM, probably the cheapest compatible GPU)
Or would I need something with more punch and RAM like the 1050Ti/1080GTX/Ti etc?
Is it practical to learn on google or AWS or am I better off buying the hardware?
My fear is that I drop a lot of cash on a fancy graphics card and then don't really get into ML programming, and then it's a waste of money.
I have no idea if I'll even find it interesting/useful. So I'm not trying to conquer the world with ML just yet.
To sum up, my short term goals:
Get some experience with ML so that I know what techniques/algos are available/good for diff types of tasks.
See if I find ML interesting
Learn what kind of hardware I need if I want to invest further.
I can afford to buy a 1080Ti to experiment with, but I don't want to waste money without knowing more. If I buy a cheaper GPU like 1050Ti can I add a 1080Ti later or is it best if all my GPU's are the same?
Simply googling will give you most of your answers. But in short, yes you can use your CPU with TensorFlow.
You will need at least CUDA 7.5 and a compute capability of at least 3.0 on your GPU (http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-installation.html)
If you have no experience with machine learning yet I would suggest playing around with Scikit learn first (http://scikit-learn.org/). It's very easy to learn and playing around with something other than neural networks will give you a better understanding in the fundamentals of machine learning. Scikit learn does not require a GPU (GPU support is actually not provided).
Since I only have an AMD A10-7850 APU, and do not have the funds to spend on a $800-$1200 NVIDIA graphics card, I am trying to make due with the resources I have in order to speed up deep learning via tensorflow/keras.
Initially, I used a pre-compiled version of Tensorflow. InceptionV3 would take about 1000-1200 seconds to compute 1 epoch. It has been painfully slow.
To speed up calculations, I first self-compiled Tensorflow with optimizers (using AVX, and SSE4 instructions). This lead to a roughly 40% decrease in computation times. The same computations performed above now only take about 600 seconds to compute. It's almost bearable - kind of like you can watch paint dry.
I am looking for ways to further decrease computation times. I only have an integrated AMD graphics card that is part of the APU. (How) (C/c)an I make use of this resource to speed up computation even more?
More generally, let's say there are other people with similar monetary restrictions and Intel setups. How can anyone WITHOUT discrete NVIDIA cards make use of their integrated graphics chips or otherwise non-NVIDIA setup to achieve faster than CPU-only performance? Is that possible? Why/Why not? What needs to be done to achieve this goal? Or will this be possible in the near future (2-6 months)? How?
After researching this topic for a few months, I can see 3.5 possible paths forward:
1.) Tensorflow + OpenCl as mentioned in the comments above:
There seems to be some movement going on this field. Over at Codeplay, Lukasz Iwanski just posted a comprehensive answer on how to get tensorflow to run with opencl here (I will only provide a link as stated above because the information might change there): https://www.codeplay.com/portal/03-30-17-setting-up-tensorflow-with-opencl-using-sycl
The potential to use integrated graphics is alluring. It's also worth exploring the use of this combination with APUs. But I am not sure how well this will work since OpenCl support is still early in development, and hardware support is very limited. Furthermore, OpenCl is not the same as a handcrafted library of optimized code. (UPDATE 2017-04-24: I have gotten the code to compile after running into some issues here!) Unfortunately, the hoped for speed improvements ON MY SETUP (iGPU) did not materialize.
CIFAR 10 Dataset:
Tensorflow (via pip ak unoptimized): 1700sec/epoch at 390% CPU
utilization.
Tensorflow (SSE4, AVX): 1100sec/epoch at 390% CPU
utilization.
Tensorflow (opencl + iGPU): 5800sec/epoch at 150% CPU
and 100% GPU utilization.
Your mileage may vary significantly. So I am wondering what are other people getting relatively speaking (unoptimized vs optimized vs opencl) on your setups?
What should be noted: opencl implementation means that all the heavy computation should be done on the GPU. (Updated on 2017/4/29) But in reality this is not the case yet because some functions have not been implemented yet. This leads to unnecessary copying back and forth of data between CPU and GPU ram. Again, imminent changes should improve the situation. And furthermore, for those interested in helping out and those wanting to speed things up, we can do something that will have a measurable impact on the performance of tensorflow with opencl.
But as it stands for now: 1 iGPU << 4 CPUS with SSE+AVX. Perhaps beefier GPUs with larger RAM and/or opencl 2.0 implementation could have made a larger difference.
At this point, I should add that similar efforts have been going on with at least Caffe and/or Theano + OpenCl. The limiting step in all cases appears to be the manual porting of CUDA/cuDNN functionality to the openCl paradigm.
2.) RocM + MIOpen
RocM stands for Radeon Open Compute and seems to be a hodgepodge of initiatives that is/will make deep-learning possible on non-NVIDIA (mostly Radeon devices). It includes 3 major components:
HIP: A tool that converts CUDA code to code that can be consumed by AMD GPUs.
ROCk: a 64-bit linux kernel driver for AMD CPU+GPU devices.
HCC: A C/C++ compiler that compiles code into code for a heterogeneous system architecture environment (HSA).
Apparently, RocM is designed to play to AMDs strenghts of having both CPU and GPU technology. Their approach to speeding up deep-learning make use of both components. As an APU owner, I am particularly interested in this possibility. But as a cautionary note: Kaveri APUs have limited support (only integrated graphcs is supported). Future APUs have not been released yet. And it appears, there is still a lot of work that is being done here to bring this project to a mature state. A lot of work will hopefully make this approach viable within a year given that AMD has announced their Radeon Instinct cards will be released this year (2017).
The problem here for me is that that RocM is providing tools for building deep learning libraries. They do not themselves represent deep learning libraries. As a data scientist who is not focused on tools development, I just want something that works. and am not necessarily interested in building what I want to then do the learning. There are not enough hours in the day to do both well at the company I am at.
NVIDIA has of course CUDA and cuDNN which are libaries of hand-crafted assembler code optimized for NVIDIA GPUs. All major deep learning frameworks build on top of these proprietary libraries. AMD currently does not have anything like that at all.
I am uncertain how successfully AMD will get to where NVIDIA is in this regard. But there is some light being shone on what AMDs intentions are in an article posted by Carlos Perez on 4/3/2017 here. A recent lecture at Stanford also talks in general terms about Ryzen, Vega and deep learning fit together. In essence, the article states that MIOpen will represent this hand-crafted library of optimized deep learning functions for AMD devices. This library is set to be released in H1 of 2017. I am uncertain how soon these libraries would be incorporated into the major deep learning frameworks and what the scope of functional implementation will be then at this time.
But apparently, AMD has already worked with the developers of Caffe to "hippify" the code basis. Basically, CUDA code is converted automatically to C code via HIP. The automation takes care of the vast majority of the code basis, leaving only less than 0.5% of code had to be changed and required manual attention. Compare that to the manual translation into openCl code, and one starts getting the feeling that this approach might be more sustainable. What I am not clear about is where the lower-level assembler language optimization come in.
(Update 2017-05-19) But with the imminent release of AMD Vega cards (the professional Frontier Edition card not for consumers will be first), there are hints that major deep learning frameworks will be supported through the MIOpen framework. A Forbes article released today shows the progress MiOpen has taken over just the last couple of months in terms of performance: it appears significant.
(Update 2017-08-25) MiOpen has officially been released. We are no longer talking in hypotheticals here. Now we just need to try out how well this framework works.
3.) Neon
Neon is Nervana's (now acquired by Intel) open-source deep-learning framework. The reason I mention this framework is that it seems to be fairly straightforward to use. The syntax is about as easy and intuitive as Keras. More importantly though, this framework has achieved speeds up to 2x faster than Tensorflow on some benchmarks due to some hand-crafted assembler language optimization for those computations. Potentially, cutting computation times from 500 secs/epoch down to 300 secs/epoch is nothing to sneeze at. 300 secs = 5 minutes. So one could get 15 epochs in in an hour. and about 50 epochs in about 3.5 hours! But ideally, I want to do these kinds of calculations in under an hour. To get to those levels, I need to use a GPU, and at this point, only NVIDIA offers full support in this regard: Neon also uses CUDA and cuDNN when a GPU is available (and of course, it has to be an NVIDIA GPU). If you have access other Intel hardware this is of course a valid way to pursue. Afterall, Neon was developed out of a motivation to get things to work optimally also on non-NVIDIA setups (like Nervana's custom CPUs, and now Intel FPGAs or Xeon Phis).
3.5.) Intel Movidius
Update 2017-08-25: I came across this article. Intel has released a USB3.0-stick-based "deep learning" accelerator. Apparently, it works with Cafe and allows the user perform common Cafe-based fine-tuning of networks and inference. This is important stressing: If you want to train your own network from scratch, the wording is very ambiguous here. I will therefore assume, that apart from fine-tuning a network, training itself should still be done on something with more parallel compute. The real kicker though is this: When I checked for the pricing this stick costs a mere $79. That's nothing compared to the cost of your average NVIDIA 1070-80(ti) card. If you merely want to tackle some vision problems using common network topologies already available for some related tasks, you can use this stick to fine tune it to your own use, then compile the code and put it into this stick to do inference quickly. Many use cases can be covered with this stick, and for again $79 it could be worth it. This being Intel, they are proposing to go all out on Intel. Their model is to use the cloud (i.e. Nervana Cloud) for training. Then, use this chip for prototype inference or inference where energy consumption matters. Whether this is the right approach or not is left for the reader to answer.
At this time, it looks like deep learning without NVIDIA is still difficult to realize. Some limited speed gains are difficult but potentially possible through the use of opencl. Other initiatives sound promising but it will take time to sort out the real impact that these initiatives will have.
If your platform supports opencl you can look at using it with tensorflow. There is some experimental support for it on Linux at this github repository. Some preliminary instructions are at the documentation section of of this github repository.
AMD announced it's Fusion platform some time ago. Having read a bit about it I'm both excited and sceptic. For example it should make it possible that GPUs and CPUs share the same memory. (and the GPU and CPU are both in the same package) Now since GPUs have a much higher memory bandwidth (around 10x the bandwidth a CPU has) and that the way CPUs and GPUs use cache is fundamentally different, the question arises how the heck can they do this? I wonder if any details are known.
I have also searched for some detailed info on how this APU technically works, but haven't found anything better than AMD's whitepaper on the subject, which, in a slightly marketing-wise tone, does present a lot of good info.
By using high-bandwidth dual ported RAM. AMD is happy to explain.
Here is a good paper (from AMD) explaining the different memory access patterns in an APU
http://amddevcentral.com/afds/assets/presentations/1004_final.pdf
CPUs and GPUs have been sharing memory for years. Fusion is no different, in fact it's far from the first instance of a GPU being integrated into a general-purpose CPU core.
Like all other such solutions, it'll be fine for casual use, but it'll be far from cutting-edge 3D acceleration.