I need GPU for my project. Till now I had limited use and used Colab free. Now I think I may need as much as 3 hours a day. Now it says GPU is not available because they are already taken. My question is, what effect does upgrading to Colab pro have on GPU availability? How many hours should I expect to have GPU and are these hours arbitrary chosen by me or not?
I referred Here and There but no good detail about GPU availability is given.
In Their website they tell that these limitations vary and depends on previous usage, and a precise answer might not be even available, so even an approximated answer is welcome.
Thanks.
Yeah.I had the same experience that GPU is not available in colab.
Why not try gpushare.com to run 3090 or 2080ti with free credit.
The platform supports the most popular machine learning frameworks,like TensorFlow and PyTorch,users can be fast to instantiate a VM image.
I think it's appropriate to accelerate your model training.
Since I only have an AMD A10-7850 APU, and do not have the funds to spend on a $800-$1200 NVIDIA graphics card, I am trying to make due with the resources I have in order to speed up deep learning via tensorflow/keras.
Initially, I used a pre-compiled version of Tensorflow. InceptionV3 would take about 1000-1200 seconds to compute 1 epoch. It has been painfully slow.
To speed up calculations, I first self-compiled Tensorflow with optimizers (using AVX, and SSE4 instructions). This lead to a roughly 40% decrease in computation times. The same computations performed above now only take about 600 seconds to compute. It's almost bearable - kind of like you can watch paint dry.
I am looking for ways to further decrease computation times. I only have an integrated AMD graphics card that is part of the APU. (How) (C/c)an I make use of this resource to speed up computation even more?
More generally, let's say there are other people with similar monetary restrictions and Intel setups. How can anyone WITHOUT discrete NVIDIA cards make use of their integrated graphics chips or otherwise non-NVIDIA setup to achieve faster than CPU-only performance? Is that possible? Why/Why not? What needs to be done to achieve this goal? Or will this be possible in the near future (2-6 months)? How?
After researching this topic for a few months, I can see 3.5 possible paths forward:
1.) Tensorflow + OpenCl as mentioned in the comments above:
There seems to be some movement going on this field. Over at Codeplay, Lukasz Iwanski just posted a comprehensive answer on how to get tensorflow to run with opencl here (I will only provide a link as stated above because the information might change there): https://www.codeplay.com/portal/03-30-17-setting-up-tensorflow-with-opencl-using-sycl
The potential to use integrated graphics is alluring. It's also worth exploring the use of this combination with APUs. But I am not sure how well this will work since OpenCl support is still early in development, and hardware support is very limited. Furthermore, OpenCl is not the same as a handcrafted library of optimized code. (UPDATE 2017-04-24: I have gotten the code to compile after running into some issues here!) Unfortunately, the hoped for speed improvements ON MY SETUP (iGPU) did not materialize.
CIFAR 10 Dataset:
Tensorflow (via pip ak unoptimized): 1700sec/epoch at 390% CPU
utilization.
Tensorflow (SSE4, AVX): 1100sec/epoch at 390% CPU
utilization.
Tensorflow (opencl + iGPU): 5800sec/epoch at 150% CPU
and 100% GPU utilization.
Your mileage may vary significantly. So I am wondering what are other people getting relatively speaking (unoptimized vs optimized vs opencl) on your setups?
What should be noted: opencl implementation means that all the heavy computation should be done on the GPU. (Updated on 2017/4/29) But in reality this is not the case yet because some functions have not been implemented yet. This leads to unnecessary copying back and forth of data between CPU and GPU ram. Again, imminent changes should improve the situation. And furthermore, for those interested in helping out and those wanting to speed things up, we can do something that will have a measurable impact on the performance of tensorflow with opencl.
But as it stands for now: 1 iGPU << 4 CPUS with SSE+AVX. Perhaps beefier GPUs with larger RAM and/or opencl 2.0 implementation could have made a larger difference.
At this point, I should add that similar efforts have been going on with at least Caffe and/or Theano + OpenCl. The limiting step in all cases appears to be the manual porting of CUDA/cuDNN functionality to the openCl paradigm.
2.) RocM + MIOpen
RocM stands for Radeon Open Compute and seems to be a hodgepodge of initiatives that is/will make deep-learning possible on non-NVIDIA (mostly Radeon devices). It includes 3 major components:
HIP: A tool that converts CUDA code to code that can be consumed by AMD GPUs.
ROCk: a 64-bit linux kernel driver for AMD CPU+GPU devices.
HCC: A C/C++ compiler that compiles code into code for a heterogeneous system architecture environment (HSA).
Apparently, RocM is designed to play to AMDs strenghts of having both CPU and GPU technology. Their approach to speeding up deep-learning make use of both components. As an APU owner, I am particularly interested in this possibility. But as a cautionary note: Kaveri APUs have limited support (only integrated graphcs is supported). Future APUs have not been released yet. And it appears, there is still a lot of work that is being done here to bring this project to a mature state. A lot of work will hopefully make this approach viable within a year given that AMD has announced their Radeon Instinct cards will be released this year (2017).
The problem here for me is that that RocM is providing tools for building deep learning libraries. They do not themselves represent deep learning libraries. As a data scientist who is not focused on tools development, I just want something that works. and am not necessarily interested in building what I want to then do the learning. There are not enough hours in the day to do both well at the company I am at.
NVIDIA has of course CUDA and cuDNN which are libaries of hand-crafted assembler code optimized for NVIDIA GPUs. All major deep learning frameworks build on top of these proprietary libraries. AMD currently does not have anything like that at all.
I am uncertain how successfully AMD will get to where NVIDIA is in this regard. But there is some light being shone on what AMDs intentions are in an article posted by Carlos Perez on 4/3/2017 here. A recent lecture at Stanford also talks in general terms about Ryzen, Vega and deep learning fit together. In essence, the article states that MIOpen will represent this hand-crafted library of optimized deep learning functions for AMD devices. This library is set to be released in H1 of 2017. I am uncertain how soon these libraries would be incorporated into the major deep learning frameworks and what the scope of functional implementation will be then at this time.
But apparently, AMD has already worked with the developers of Caffe to "hippify" the code basis. Basically, CUDA code is converted automatically to C code via HIP. The automation takes care of the vast majority of the code basis, leaving only less than 0.5% of code had to be changed and required manual attention. Compare that to the manual translation into openCl code, and one starts getting the feeling that this approach might be more sustainable. What I am not clear about is where the lower-level assembler language optimization come in.
(Update 2017-05-19) But with the imminent release of AMD Vega cards (the professional Frontier Edition card not for consumers will be first), there are hints that major deep learning frameworks will be supported through the MIOpen framework. A Forbes article released today shows the progress MiOpen has taken over just the last couple of months in terms of performance: it appears significant.
(Update 2017-08-25) MiOpen has officially been released. We are no longer talking in hypotheticals here. Now we just need to try out how well this framework works.
3.) Neon
Neon is Nervana's (now acquired by Intel) open-source deep-learning framework. The reason I mention this framework is that it seems to be fairly straightforward to use. The syntax is about as easy and intuitive as Keras. More importantly though, this framework has achieved speeds up to 2x faster than Tensorflow on some benchmarks due to some hand-crafted assembler language optimization for those computations. Potentially, cutting computation times from 500 secs/epoch down to 300 secs/epoch is nothing to sneeze at. 300 secs = 5 minutes. So one could get 15 epochs in in an hour. and about 50 epochs in about 3.5 hours! But ideally, I want to do these kinds of calculations in under an hour. To get to those levels, I need to use a GPU, and at this point, only NVIDIA offers full support in this regard: Neon also uses CUDA and cuDNN when a GPU is available (and of course, it has to be an NVIDIA GPU). If you have access other Intel hardware this is of course a valid way to pursue. Afterall, Neon was developed out of a motivation to get things to work optimally also on non-NVIDIA setups (like Nervana's custom CPUs, and now Intel FPGAs or Xeon Phis).
3.5.) Intel Movidius
Update 2017-08-25: I came across this article. Intel has released a USB3.0-stick-based "deep learning" accelerator. Apparently, it works with Cafe and allows the user perform common Cafe-based fine-tuning of networks and inference. This is important stressing: If you want to train your own network from scratch, the wording is very ambiguous here. I will therefore assume, that apart from fine-tuning a network, training itself should still be done on something with more parallel compute. The real kicker though is this: When I checked for the pricing this stick costs a mere $79. That's nothing compared to the cost of your average NVIDIA 1070-80(ti) card. If you merely want to tackle some vision problems using common network topologies already available for some related tasks, you can use this stick to fine tune it to your own use, then compile the code and put it into this stick to do inference quickly. Many use cases can be covered with this stick, and for again $79 it could be worth it. This being Intel, they are proposing to go all out on Intel. Their model is to use the cloud (i.e. Nervana Cloud) for training. Then, use this chip for prototype inference or inference where energy consumption matters. Whether this is the right approach or not is left for the reader to answer.
At this time, it looks like deep learning without NVIDIA is still difficult to realize. Some limited speed gains are difficult but potentially possible through the use of opencl. Other initiatives sound promising but it will take time to sort out the real impact that these initiatives will have.
If your platform supports opencl you can look at using it with tensorflow. There is some experimental support for it on Linux at this github repository. Some preliminary instructions are at the documentation section of of this github repository.
AMD announced it's Fusion platform some time ago. Having read a bit about it I'm both excited and sceptic. For example it should make it possible that GPUs and CPUs share the same memory. (and the GPU and CPU are both in the same package) Now since GPUs have a much higher memory bandwidth (around 10x the bandwidth a CPU has) and that the way CPUs and GPUs use cache is fundamentally different, the question arises how the heck can they do this? I wonder if any details are known.
I have also searched for some detailed info on how this APU technically works, but haven't found anything better than AMD's whitepaper on the subject, which, in a slightly marketing-wise tone, does present a lot of good info.
By using high-bandwidth dual ported RAM. AMD is happy to explain.
Here is a good paper (from AMD) explaining the different memory access patterns in an APU
http://amddevcentral.com/afds/assets/presentations/1004_final.pdf
CPUs and GPUs have been sharing memory for years. Fusion is no different, in fact it's far from the first instance of a GPU being integrated into a general-purpose CPU core.
Like all other such solutions, it'll be fine for casual use, but it'll be far from cutting-edge 3D acceleration.
Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 3 years ago.
Improve this question
I am developing a product with heavy 3D graphics computations, to a large extent closest point and range searches. Some hardware optimization would be useful. While I know little about this, my boss (who has no software experience) advocates FPGA (because it can be tailored), while our junior developer advocates GPGPU with CUDA, because its cheap, hot and open. While I feel I lack judgement in this question, I believe CUDA is the way to go also because I am worried about flexibility, our product is still under strong development.
So, rephrasing the question, are there any reasons to go for FPGA at all? Or is there a third option?
I investigated the same question a while back. After chatting to people who have worked on FPGAs, this is what I get:
FPGAs are great for realtime systems, where even 1ms of delay might be too long. This does not apply in your case;
FPGAs can be very fast, espeically for well-defined digital signal processing usages (e.g. radar data) but the good ones are much more expensive and specialised than even professional GPGPUs;
FPGAs are quite cumbersome to programme. Since there is a hardware configuration component to compiling, it could take hours. It seems to be more suited to electronic engineers (who are generally the ones who work on FPGAs) than software developers.
If you can make CUDA work for you, it's probably the best option at the moment. It will certainly be more flexible than a FPGA.
Other options include Brook from ATI, but until something big happens, it is simply not as well adopted as CUDA. After that, there's still all the traditional HPC options (clusters of x86/PowerPC/Cell), but they are all quite expensive.
Hope that helps.
We did some comparison between FPGA and CUDA. One thing where CUDA shines if you can realy formulate your problem in a SIMD fashion AND can access the memory coalesced. If the memory accesses are not coalesced(1) or if you have different control flow in different threads the GPU can lose drastically its performance and the FPGA can outperform it. Another thing is when your operation is realtive small, but you have a huge amount of it. But you cant (e.g. due to synchronisation) no start it in a loop in one kernel, then your invocation times for the GPU kernel exceeds the computation time.
Also the power of the FPGA could be better (depends on your application scenarion, ie. the GPU is only cheaper (in terms of Watts/Flop) when its computing all the time).
Offcourse the FPGA has also some drawbacks: IO can be one (we had here an application were we needed 70 GB/s, no problem for GPU, but to get this amount of data into a FPGA you need for conventional design more pins than available). Another drawback is the time and money. A FPGA is much more expensive than the best GPU and the development times are very high.
(1) Simultanously accesses from different thread to memory have to be to sequential addresses. This is sometimes really hard to achieve.
I would go with CUDA.
I work in image processing and have been trying hardware add-ons for years. First we had i860, then Transputer, then DSP, then the FPGA and direct-compiliation-to-hardware.
What innevitably happened was that by the time the hardware boards were really debugged and reliable and the code had been ported to them - regular CPUs had advanced to beat them, or the hosting machine architecture changed and we couldn't use the old boards, or the makers of the board went bust.
By sticking to something like CUDA you aren't tied to one small specialist maker of FPGA boards. The performence of GPUs is improving faster then CPUs and is funded by the gamers. It's a mainstream technology and so will probably merge with multi-core CPUs in the future and so protect your investment.
FPGAs
What you need:
Learn VHDL/Verilog (and trust me you don't want to)
Buy hw for testing, licences for synthesis tools
If you already have infrastructure and you need to develop only your core
Develop design ( and it can take years )
If you don't:
DMA, hw driver, ultra expensive synthesis tools
tons of knowledge about buses, memory mapping, hw synthesis
build the hw, buy the ip cores
Develop design
Not mentioning of board developement
For example average FPGA pcie card with chip Xilinx ZynqUS+ costs more than 3000$
FPGA cloud is also costly 2$/h+
Result:
This is something which requires resources of running company at least.
GPGPU (CUDA/OpenCL)
You already have hw to test on.
Compare to FPGA stuff:
Everything is well documented .
Everything is cheap
Everything works
Everything is well integrated to programming languages
There is GPU cloud as well.
Result:
You need to just download sdk and you can start.
This is an old thread started in 2008, but it would be good to recount what happened to FPGA programming since then:
1. C to gates in FPGA is the mainstream development for many companies with HUGE time saving vs. Verilog/SystemVerilog HDL. In C to gates System level design is the hard part.
2. OpenCL on FPGA is there for 4+ years including floating point and "cloud" deployment by Microsoft (Asure) and Amazon F1 (Ryft API). With OpenCL system design is relatively easy because of very well defined memory model and API between host and compute devices.
Software folks just need to learn a bit about FPGA architecture to be able to do things that are NOT EVEN POSSIBLE with GPUs and CPUs for the reasons of both being fixed silicon and not having broadband (100Gb+) interfaces to the outside world. Scaling down chip geometry is no longer possible, nor extracting more heat from the single chip package without melting it, so this looks like the end of the road for single package chips. My thesis here is that the future belongs to parallel programming of multi-chip systems, and FPGAs have a great chance to be ahead of the game. Check out http://isfpga.org/ if you have concerns about performance, etc.
FPGA-based solution is likely to be way more expensive than CUDA.
Obviously this is a complex question. The question might also include the cell processor.
And there is probably not a single answer which is correct for other related questions.
In my experience, any implementation done in abstract fashion, i.e. compiled high level language vs. machine level implementation, will inevitably have a performance cost, esp in a complex algorithm implementation. This is true of both FPGA's and processors of any type. An FPGA designed specifically to implement a complex algorithm will perform better than an FPGA whose processing elements are generic, allowing it a degree of programmability from input control registers, data i/o etc.
Another general example where an FPGA can be much higher performance is in cascaded processes where on process outputs become the inputs to another and they cannot be done concurrently. Cascading processes in an FPGA is simple, and can dramatically lower memory I/O requirements while processor memory will be used to effectively cascade two or more processes where there are data dependencies.
The same can be said of a GPU and CPU. Algorithms implemented in C executing on a CPU developed without regard to the inherent performance characteristics of the cache memory or main memory system will not perform as well as one implemented which does. Granted, not considering these performance characteristics simplifies implementation. But at a performance cost.
Having no direct experience with a GPU, but knowing its inherent memory system performance issues, it too will be subjected to performance issues.
CUDA has a fairly substantial code base of examples and a SDK, including a BLAS back-end. Try to find some examples similar to what you are doing, perhaps also looking at the GPU Gems series of books, to gauge how well CUDA will fit your applications. I'd say from a logistic point of view, CUDA is easier to work with and much, much cheaper than any professional FPGA development toolkit.
At one point I did look into CUDA for claim reserve simulation modelling. There is quite a good series of lectures linked off the web-site for learning. On Windows, you need to make sure CUDA is running on a card with no displays as the graphics subsystem has a watchdog timer that will nuke any process running for more than 5 seconds. This does not occur on Linux.
Any mahcine with two PCI-e x16 slots should support this. I used a HP XW9300, which you can pick up off ebay quite cheaply. If you do, make sure it has two CPU's (not one dual-core CPU) as the PCI-e slots live on separate Hypertransport buses and you need two CPU's in the machine to have both buses active.
What are you deploying on? Who is your customer? Without even know the answers to these questions, I would not use an FPGA unless you are building a real-time system and have electrical/computer engineers on your team that have knowledge of hardware description languages such as VHDL and Verilog. There's a lot to it and it takes a different frame of mind than conventional programming.
I'm a CUDA developer with very littel experience with FPGA:s, however I've been trying to find comparisons between the two.
What I've concluded so far:
The GPU has by far higher ( accessible ) peak performance
It has a more favorable FLOP/watt ratio.
It is cheaper
It is developing faster (quite soon you will literally have a "real" TFLOP available).
It is easier to program ( read article on this not personal opinion)
Note that I'm saying real/accessible to distinguish from the numbers you will see in a GPGPU commercial.
BUT the gpu is not more favorable when you need to do random accesses to data. This will hopefully change with the new Nvidia Fermi architecture which has an optional l1/l2 cache.
my 2 cents
Others have given good answers, just wanted to add a different perspective. Here is my survey paper published in ACM Computing Surveys 2015 (its permalink is here), which compares GPU with FPGA and CPU on energy efficiency metric. Most papers report: FPGA is more energy efficient than GPU, which, in turn, is more energy efficient than CPU. Since power budgets are fixed (depending on cooling capability), energy efficiency of FPGA means one can do more computations within same power budget with FPGA, and thus get better performance with FPGA than with GPU. Of course, also account for FPGA limitations, as mentioned by others.
FPGA will not be favoured by those with a software bias as they need to learn an HDL or at least understand systemC.
For those with a hardware bias FPGA will be the first option considered.
In reality a firm grasp of both is required & then an objective decision can be made.
OpenCL is designed to run on both FPGA & GPU, even CUDA can be ported to FPGA.
FPGA & GPU accelerators can be used together
So it's not a case of what is better one or the other. There is also the debate about CUDA vs OpenCL
Again unless you have optimized & benchmarked both to your specific application you can not know with 100% certainty.
Many will simply go with CUDA because of its commercial nature & resources. Others will go with openCL because of its versatility.
FPGAs are more parallel than GPUs, by three orders of magnitude. While good GPU features thousands of cores, FPGA may have millions of programmable gates.
While CUDA cores must do highly similar computations to be productive, FPGA cells are truly independent from each other.
FPGA can be very fast with some groups of tasks and are often used where a millisecond is already seen as a long duration.
GPU core is way more powerful than FPGA cell, and much easier to program. It is a core, can divide and multiply no problem when FPGA cell is only capable of rather simple boolean logic.
As GPU core is a core, it is efficient to program it in C++. Even it it is also possible to program FPGA in C++, it is inefficient (just "productive"). Specialized languages like VDHL or Verilog must be used - they are difficult and challenging to master.
Most of the true and tried instincts of a software engineer are useless with FPGA. You want a for loop with these gates? Which galaxy are you from? You need to change into the mindset of electronics engineer to understand this world.
at latest GTC'13 many HPC people agreed that CUDA is here to stay. FGPA's are cumbersome, CUDA is getting quite more mature supporting Python/C/C++/ARM.. either way, that was a dated question
Programming a GPU in CUDA is definitely easier. If you don't have any experience with programming FPGAs in HDL it will almost surely be too much of a challenge for you, but you can still program them with OpenCL which is kinda similar to CUDA. However, it is harder to implement and probably a lot more expensive than programming GPUs.
Which one is Faster?
GPU runs faster, but FPGA can be more efficient.
GPU has the potential of running at a speed higher than FPGA can ever reach. But only for algorithms that are specially suited for that. If the algorithm is not optimal, the GPU will loose a lot of performance.
FPGA on the other hand runs much slower, but you can implement problem-specific hardware that will be very efficient and get stuff done in less time.
It's kinda like eating your soup with a fork very fast vs. eating it with a spoon more slowly.
Both devices base their performance on parallelization, but each in a slightly different way. If the algorithm can be granulated into a lot of pieces that execute the same operations (keyword: SIMD), the GPU will be faster. If the algorithm can be implemented as a long pipeline, the FPGA will be faster. Also, if you want to use floating point, FPGA will not be very happy with it :)
I have dedicated my whole master's thesis to this topic.
Algorithm Acceleration on FPGA with OpenCL