I try to split my dataset to 8:1:1 and my dataset is in a directory, at first I try this code
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
dir,
validation_split=0.2,
subset="training",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
dir,
validation_split=0.1,
subset="validation",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
But it doesn't do that job and just split my directory to val_ds and test_ds
after this, I use this code
# create a data generator
datagen = ImageDataGenerator()
# load and iterate training dataset
train_it = datagen.flow_from_directory(dir, target_size=(32, 32), color_mode='grayscale', class_mode='binary', batch_size=32, shuffle=True, follow_links=False, subset=None, interpolation='nearest')
# load and iterate validation dataset
val_it = datagen.flow_from_directory(dir, target_size=(32, 32), color_mode='grayscale', class_mode='binary', batch_size=32, shuffle=True, follow_links=False, subset=None, interpolation='nearest')
# load and iterate test dataset
test_it = datagen.flow_from_directory(dir, target_size=(32, 32), color_mode='grayscale', class_mode='binary', batch_size=32, shuffle=True, follow_links=False, subset=None, interpolation='nearest')
This code also has a problem with my model so when I use this code My model summary will be like this
Model: "sequential_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
rescaling_1 (Rescaling) (None, None, None, None) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, None, None, 32) 320
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, None, None, 32) 0
_________________________________________________________________
conv2d_4 (Conv2D) (None, None, None, 32) 9248
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, None, None, 32) 0
_________________________________________________________________
conv2d_5 (Conv2D) (None, None, None, 32) 9248
_________________________________________________________________
max_pooling2d_5 (MaxPooling2 (None, None, None, 32) 0
_________________________________________________________________
dropout_1 (Dropout) (None, None, None, 32) 0
_________________________________________________________________
flatten_1 (Flatten) (None, None) 0
_________________________________________________________________
dense_2 (Dense) (None, 128) 16512
_________________________________________________________________
dense_3 (Dense) (None, 26) 3354
=================================================================
Total params: 38,682
Trainable params: 38,682
Non-trainable params: 0
_________________________________________________________________
and this is my model
num_classes = 26
model = tf.keras.Sequential([
tf.keras.layers.experimental.preprocessing.Rescaling(1./255),
tf.keras.layers.Conv2D(32, 3, activation='relu'),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Conv2D(32, 3, activation='relu'),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Conv2D(32, 3, activation='relu'),
tf.keras.layers.MaxPooling2D(),
layers.Dropout(0.2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(num_classes)
])
model.compile(
optimizer='adam',
loss=tf.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
So I need to know How can I split my data without any problem?
You can do the following
import glob # To get the whole path for all the images
'''
Let's consider that your images lie inside 2 folders - 'a' and 'b' which are inside your 'dir' folder. To get paths to each of those images you can use
the below code
'''
image_paths_a = glob.glob('./dir/a/*.jpg') # .jpg if the files ends with jpg
image_paths_b = glob.glob('./dir/b/*.jpg') # to get images from b
images_total = image_paths_a + image_paths_b
# In case you have other folders you can also do this
# to get all images inside all folder in 'dir' folder.
images_total = glob.glob('./dir/*/*.jpg')
# Now get the labels corresponding to these images
# If you have labeled as folder names then you can do it like this
image_labels = [i.split('/')[-2] for i in images_total]
'''
After doing the above you have 2 lists -> 1) Image paths 2) corresponding labels and now you can just use the 'sklearn.model_selection.train_test_split' to get your splits
'''
from sklearn.model_selection import train_test_split
# To set train data and get rest 20% for further split
xtrain, xtest, ytrain, ytest = trian_test_split(images_total,
image_labels,
stratify=image_labels,
random_state=1234,
test_size=0.2)
# get 10%-10% of original data
xvalid, xtest, yvalid, ytest= trian_test_split(xtest,
ytest,
stratify=ytest,
random_state=1234,
test_size=0.5)
'''
Now you can just create a dataset but before that you will create a function to read images from image paths.
'''
def read_img(path, label):
file = tf.io.read_file(path)
img = tf.image.decode_png(file)
# dim1 and dim2 are your desired dimensions
img = tf.image.resize(img, (dim1, dim2))
return img, label
train_dataset = tf.data.Dataset.from_tensor_slices((xtrain, ytrain))
train_dataset = train_dataset.map(read_img).batch(batch_size)
valid_dataset = tf.data.Dataset.from_tensor_slices((xvalid, yvalid))
valid_dataset = valid_dataset.map(read_img).batch(batch_size)
test_dataset = tf.data.Dataset.from_tensor_slices((xtest, ytest))
test_dataset = test_dataset.map(read_img).batch(batch_size)
# Now you just need to train your model
model.fit(train_dataset, epochs=5, validation_data=valid_dataset)
Related
I an stacking two models trained on different inputs from two data collections as shown below using Tensorflow Keras 2.6.2. The stacking is performed with a convolutional meta-learner to predict on a common hold out test set. Given below is the code and he model architecture.
#load data
#datase-1
X_tr1 = np.load('data/X_tr1.npy') #shape (200, 224,224,3)
Y_tr1 = np.load('data/Y_tr1.npy') #shape (200, 224,224,1)
X_val1 = np.load('data/X_val1.npy') #shape (100, 224,224,3)
Y_val1 = np.load('data/Y_val1.npy') #shape (100, 224,224,1)
#dataset-2
X_tr2 = np.load('data/X_tr2.npy') #shape (200, 224,224,3)
Y_tr2 = np.load('data/Y_tr2.npy') #shape (200, 224,224,1)
X_val2 = np.load('data/X_val2.npy') #shape (100, 224,224,3)
Y_val2 = np.load('data/Y_val2.npy') #shape (100, 224,224,1)
#common hold-out test set
X_ts = np.load('data/X_ts.npy') #shape (50, 224,224,3)
Y_ts = np.load('data/Y_ts.npy') #shape (50, 224,224,1)
#%%
#instantiate the models
img_width, img_height = 224,224
input_shape = (img_width, img_height, 3) #RGB inputs
model_input1 = Input(shape=input_shape) #input to model1
model_input2 = Input(shape=input_shape) #input to model2
n_classes=1 #grayscale mask output
activation='sigmoid'
batch_size = 8
n_epochs = 256
BACKBONE = 'vgg16'
# define model
model1 = sm.Unet(BACKBONE, encoder_weights='imagenet',
classes=n_classes, activation=activation)
model2 = sm.Unet(BACKBONE, encoder_weights='imagenet',
classes=n_classes, activation=activation)
#%%
# constructing a stacking ensemble of the two models
# A second-level fully-convolutional meta-learner is used to learn
# the features extracted from the penultimate layers of the models
n_models = 2
def load_all_models(n_models):
all_models = list()
model1.load_weights('weights/vgg16_1.hdf5') # path to model1
model_loss1a=Model(inputs=model1.input,
outputs=model1.get_layer('decoder_stage4b_relu').output) #name of the penultimate layer
x1 = model_loss1a.output
model1a = Model(inputs=model1.input, outputs=x1, name='model1')
all_models.append(model1a)
model2.load_weights('weights/vgg16_2.hdf5') #path to model2
model_loss2a=Model(inputs=model2.input,
outputs=model2.get_layer('decoder_stage4b_relu').output)
x2 = model_loss2a.output
model2a = Model(inputs=model2.input, outputs=x2, name='model2')
all_models.append(model2a)
return all_models
# load models
n_members = 2
members = load_all_models(n_members)
print('Loaded %d models' % len(members))
def define_stacked_model(members):
# update all layers in all models to not be trainable
for i in range(len(members)):
model = members[i]
for layer in model.layers [1:]:
# make not trainable
layer.trainable = False
layer._name = 'ensemble_' + str(i+1) + '_' + layer.name
ensemble_outputs = [model(model_input1, model_input2) for model in members]
merge = Concatenate()(ensemble_outputs)
# meta-learner, fully-convolutional
x4 = Conv2D(128, (3,3), activation='relu',
name = 'NewConv1', padding='same')(merge)
x5 = Conv2D(1, (1,1), activation='sigmoid',
name = 'NewConvfinal')(x4)
model= Model(inputs=[model_input1,model_input2],
outputs=x4)
return model
print("Creating Ensemble")
ensemble = define_stacked_model(members)
print("Ensemble architecture: ")
print(ensemble.summary())
Shown below is the architecture of the stacked model:
Model: "model_4"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) [(None, 224, 224, 3) 0
__________________________________________________________________________________________________
input_2 (InputLayer) [(None, 224, 224, 3) 0
__________________________________________________________________________________________________
model1 (Functional) (None, None, None, 1 23752128 input_1[0][0]
input_2[0][0]
__________________________________________________________________________________________________
model2 (Functional) (None, None, None, 1 23752128 input_1[0][0]
input_2[0][0]
__________________________________________________________________________________________________
concatenate (Concatenate) (None, 224, 224, 32) 0 model1[0][0]
model2[0][0]
__________________________________________________________________________________________________
NewConv1 (Conv2D) (None, 224, 224, 128 36992 concatenate[0][0]
__________________________________________________________________________________________________
NewConv2 (Conv2D) (None, 224, 224, 64) 73792 NewConv1[0][0]
__________________________________________________________________________________________________
NewConv3 (Conv2D) (None, 224, 224, 32) 18464 NewConv2[0][0]
__________________________________________________________________________________________________
NewConvfinal (Conv2D) (None, 224, 224, 1) 33 NewConv3[0][0]
==================================================================================================
Total params: 47,633,537
Trainable params: 129,281
Non-trainable params: 47,504,256
I compile and train the model as shown below:
opt = keras.optimizers.Adam(lr=0.001)
loss_func='binary_crossentropy'
ensemble.compile(optimizer=opt,
loss=loss_func,
metrics=['binary_accuracy'])
results_ensemble = ensemble.fit((X_tr1, Y_tr1, X_tr2, Y_tr2),
batch_size=batch_size,
epochs=n_epochs,
verbose=1,
validation_data=(X_val1, Y_val1, X_val2, Y_val2))
I get the following error:
Traceback (most recent call last):
File "/home/codes/untitled5.py", line 563, in <module>
validation_data=(X_val1, Y_val1, X_val2, Y_val2))
File "/home/anaconda3/envs/tf262/lib/python3.7/site-packages/keras/engine/training.py", line 1125, in fit
data_adapter.unpack_x_y_sample_weight(validation_data))
File "/home/anaconda3/envs/tf262/lib/python3.7/site-packages/keras/engine/data_adapter.py", line 1574, in unpack_x_y_sample_weight
raise ValueError(error_msg)
ValueError: Data is expected to be in format `x`, `(x,)`, `(x, y)`, or `(x, y, sample_weight)`, found: (array([[[[0.09803922, 0.09803922, 0.09803922],
[0.09803922, 0.09803922, 0.09803922],
[0.09803922, 0.09803922, 0.09803922],
...,
[0.08627451, 0.08627451, 0.08627451],
[0.08627451, 0.08627451, 0.08627451],
[0.05098039, 0.05098039, 0.05098039]],...
Also how do I predict with a single X_ts provided the ensemble model now has two separate inputs?
New error after trying to implement the suggestions:
File "/home/codes/untitled5.py", line 595, in <module>
validation_data=outputs)
File "/home/anaconda3/envs/tf262/lib/python3.7/site-packages/keras/engine/training.py", line 1184, in fit
tmp_logs = self.train_function(iterator)
ValueError: Layer model_4 expects 2 input(s), but it received 4 input tensors. Inputs received: [<tf.Tensor 'IteratorGetNext:0' shape=(None, 224, 224, 3) dtype=float32>, <tf.Tensor 'IteratorGetNext:1' shape=(None, 224, 224, 1) dtype=float32>, <tf.Tensor 'IteratorGetNext:2' shape=(None, 224, 224, 3) dtype=float32>, <tf.Tensor 'IteratorGetNext:3' shape=(None, 224, 224, 1) dtype=float32>]
Answer based on comment. Multi-inputs need to be passed as a list, not a tuple.
Change:
results_ensemble = ensemble.fit((X_tr1, Y_tr1, X_tr2, Y_tr2),
batch_size=batch_size,
epochs=n_epochs,
verbose=1,
validation_data=(X_val1, Y_val1, X_val2, Y_val2))
To:
inputs = [X_tr1, Y_tr1, X_tr2, Y_tr2] # you can pass the list itself or the variable
results_ensemble = ensemble.fit(inputs,
batch_size=batch_size,
epochs=n_epochs,
verbose=1,
validation_data=([X_val1, X_val2], y_val))
# test_inputs_diff = [x_test1, x_test2] # different input
# test_inputs_same = [x_test1, x_test1] # same input
# preds_diff = ensemble.predict(test_inputs_diff)
# preds_same = ensemble.predict(test_inputs_same)
I have a data having 100 features: Partial Preview of Data
I want to implement Attention to extract 32 features from these 100 and feed those to LSTM as done similarly in this paper: https://arxiv.org/abs/1902.11074
I want to implement the same architecture as given in the paper but am not able to formulate the code for doing it.
X = data.iloc[:, 1:101].values
y = data.iloc[:, 0].values
# splitting the data
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2,
random_state=2)
X_train = X_train.reshape(-1, 1, 100)
X_test = X_test.reshape(-1, 1, 100)
print("Training & Testing Data Shape: ", X_train.shape, X_test.shape, y_train.shape, y_test.shape)
# Model
model = tf.keras.Sequential()
model.add(tf.keras.layers.LSTM(128, return_sequences=True, input_shape=(1, 100)))
model.add(tf.keras.layers.Dropout(0.3))
model.add(tf.keras.layers.LSTM(32, return_sequences=False))
model.add(tf.keras.layers.Dropout(0.3))
model.add(tf.keras.layers.Dense(1, activation = 'linear'))
# Compile Model
optimizer = tf.keras.optimizers.Adam(learning_rate=0.01,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-7)
model.compile(loss='mean_absolute_error',
optimizer=optimizer)
# Fitting the model
history = model.fit(X_train, y_train,
epochs=30,
batch_size=64,
verbose=1,
validation_split=0.2,
shuffle=True)
Some more details:
Training & Testing Data Shape: (1890, 1, 100) (473, 1, 100) (1890,) (473,)
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
lstm (LSTM) (None, 1, 128) 117248
_________________________________________________________________
dropout (Dropout) (None, 1, 128) 0
_________________________________________________________________
lstm_1 (LSTM) (None, 32) 20608
_________________________________________________________________
dropout_1 (Dropout) (None, 32) 0
_________________________________________________________________
dense (Dense) (None, 1) 33
=================================================================
Total params: 137,889
Trainable params: 137,889
Non-trainable params: 0
_________________________________________________________________
Trying to do binary image classification using VGG16 for transfer learning. This is my code for training:
import tensorflow as tf
from tensorflow import keras
from keras.models import Sequential
from keras.layers import Activation, Dense
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
import os
cwd = os.getcwd()
vgg16_model = tf.keras.applications.VGG16(
include_top=True,
weights="imagenet",
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
classifier_activation="softmax",
)
vgg16_model._layers.pop()
model = Sequential()
for layer in vgg16_model.layers:
model.add(layer)
for layer in model.layers:
layer.trainable = False
model.add(Dense(4096, activation='relu'))
model.add(Dense(2, activation='softmax'))
model.summary()
model.compile(optimizer=Adam(lr=.0001), loss='binary_crossentropy', metrics=['accuracy'])
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
cwd + '/images/dd_notadd/train',
target_size=(224, 224),
batch_size=32,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
cwd + '/images/dd_notadd/validation',
target_size=(224, 224),
batch_size=32,
class_mode='binary')
model.fit(
train_generator,
steps_per_epoch=10,
epochs=20,
validation_data=validation_generator,
validation_steps=10)
model.save("ddornot.h5")
Then this is my code for inference:
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Mar 7 11:12:16 2021
#author: lennartkonst
"""
import tensorflow as tf
from tensorflow import keras
from keras.models import Sequential
from keras.layers import Activation, Dense
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
import os
import numpy as np
import cv2
cwd = os.getcwd()
vgg16_model = tf.keras.applications.VGG16(
include_top=True,
weights="imagenet",
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000,
classifier_activation="softmax",
)
vgg16_model._layers.pop()
model = Sequential()
for layer in vgg16_model.layers:
model.add(layer)
for layer in model.layers:
layer.trainable = False
model.add(Dense(4096, activation='relu'))
model.add(Dense(2, activation='softmax'))
model.summary()
model.compile(optimizer=Adam(lr=.0001), loss='binary_crossentropy', metrics=['accuracy'])
model.load_weights("ddornot.h5")
testimagefilename = cwd + '/images/dd_notadd/testimage/testimage.jpeg'
img = cv2.imread(testimagefilename)
img = cv2.resize(img,(224,224))
img = np.expand_dims(img, axis=0)
print(img.shape)
img_class = model.predict(img, batch_size=1)
I get the following output on this inference script:
Model: "sequential_29"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
block1_conv1 (Conv2D) (None, 224, 224, 64) 1792
_________________________________________________________________
block1_conv2 (Conv2D) (None, 224, 224, 64) 36928
_________________________________________________________________
block1_pool (MaxPooling2D) (None, 112, 112, 64) 0
_________________________________________________________________
block2_conv1 (Conv2D) (None, 112, 112, 128) 73856
_________________________________________________________________
block2_conv2 (Conv2D) (None, 112, 112, 128) 147584
_________________________________________________________________
block2_pool (MaxPooling2D) (None, 56, 56, 128) 0
_________________________________________________________________
block3_conv1 (Conv2D) (None, 56, 56, 256) 295168
_________________________________________________________________
block3_conv2 (Conv2D) (None, 56, 56, 256) 590080
_________________________________________________________________
block3_conv3 (Conv2D) (None, 56, 56, 256) 590080
_________________________________________________________________
block3_pool (MaxPooling2D) (None, 28, 28, 256) 0
_________________________________________________________________
block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160
_________________________________________________________________
block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808
_________________________________________________________________
block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808
_________________________________________________________________
block4_pool (MaxPooling2D) (None, 14, 14, 512) 0
_________________________________________________________________
block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_pool (MaxPooling2D) (None, 7, 7, 512) 0
_________________________________________________________________
flatten (Flatten) (None, 25088) 0
_________________________________________________________________
fc1 (Dense) (None, 4096) 102764544
_________________________________________________________________
fc2 (Dense) (None, 4096) 16781312
_________________________________________________________________
dense_58 (Dense) (None, 4096) 16781312
_________________________________________________________________
dense_59 (Dense) (None, 2) 8194
=================================================================
Total params: 151,050,050
Trainable params: 16,789,506
Non-trainable params: 134,260,544
_________________________________________________________________
(1, 224, 224, 3)
WARNING:tensorflow:7 out of the last 7 calls to <function Model.make_predict_function.<locals>.predict_function at 0x7fb1487b9280> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating #tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your #tf.function outside of the loop. For (2), #tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
Traceback (most recent call last):
File "/Users/lennartkonst/Documents/Twitterbots/Pythonbots/DreamDestinationsBot/ML/ddornotinference.py", line 60, in <module>
img_class = model.predict(img, batch_size=1)
File "/opt/anaconda3/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py", line 130, in _method_wrapper
return method(self, *args, **kwargs)
File "/opt/anaconda3/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py", line 1614, in predict
all_outputs = nest.map_structure_up_to(batch_outputs, concat, outputs)
File "/opt/anaconda3/lib/python3.8/site-packages/tensorflow/python/util/nest.py", line 1135, in map_structure_up_to
return map_structure_with_tuple_paths_up_to(
File "/opt/anaconda3/lib/python3.8/site-packages/tensorflow/python/util/nest.py", line 1234, in map_structure_with_tuple_paths_up_to
results = [func(*args, **kwargs) for args in zip(flat_path_list,
File "/opt/anaconda3/lib/python3.8/site-packages/tensorflow/python/util/nest.py", line 1234, in <listcomp>
results = [func(*args, **kwargs) for args in zip(flat_path_list,
File "/opt/anaconda3/lib/python3.8/site-packages/tensorflow/python/util/nest.py", line 1137, in <lambda>
lambda _, *values: func(*values), # Discards the path arg.
File "/opt/anaconda3/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py", line 2673, in concat
return array_ops.concat(tensors, axis=axis)
File "/opt/anaconda3/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py", line 201, in wrapper
return target(*args, **kwargs)
File "/opt/anaconda3/lib/python3.8/site-packages/tensorflow/python/ops/array_ops.py", line 1654, in concat
return gen_array_ops.concat_v2(values=values, axis=axis, name=name)
File "/opt/anaconda3/lib/python3.8/site-packages/tensorflow/python/ops/gen_array_ops.py", line 1207, in concat_v2
_ops.raise_from_not_ok_status(e, name)
File "/opt/anaconda3/lib/python3.8/site-packages/tensorflow/python/framework/ops.py", line 6843, in raise_from_not_ok_status
six.raise_from(core._status_to_exception(e.code, message), None)
File "<string>", line 3, in raise_from
InvalidArgumentError: Value for attr 'N' of 1 must be at least minimum 2
; NodeDef: {{node ConcatV2}}; Op<name=ConcatV2; signature=values:N*T, axis:Tidx -> output:T; attr=N:int,min=2; attr=T:type; attr=Tidx:type,default=DT_INT32,allowed=[DT_INT32, DT_INT64]> [Op:ConcatV2] name: concat
I don't fully understand what the problem is, I tried several different shapes but I figure the input shape should be just 1,224,224,3.
Any help would be greatly appreciated.
Your generators specify class_mode as binary and you specify the loss as 'binary_crossentropy'. Therefore your dense layer at the top of the model should have a single neuron and the activation='sigmoid. Why do you bother to recreate the whole model for inference since you saved the entire model just load it with
model= keras.models.load_model("ddornot.h5")
You are reading in your test image using cv2. In that case if you have a color image it is in BGR format. Your model was trained on RGB images so you have to convert it with
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
Note in your code for vgg16 you should have set
image_shape=(224,224,3)
Also you can try this for your model
base_model=tf.keras.applications.VGG19( include_top=False, input_shape=(224,224,3), pooling='max', weights='imagenet' )
for layer in base_model.layers:
layer.trainable=False
x=base_model.output
x=tf.keras.layers.BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001 )(x)
x= tf.keras.layers.Dense(1024, activation='relu)(x)
x= tf.keras.layers.Dropout(.2)(x)
predictions=tf.keras.layers.Deense(1, activation='sigmoid)(x)
model=Model(inputs=base_model.input, outputs=predictions)
model.compile(optimizer=Adam(lr=.0001), loss='binary_crossentropy', metrics=['accuracy'])
I finally found a workaround the error. It's still not preferable off course so a good answer where I can just use model.predict() would be awesome.
import tensorflow as tf
from tensorflow import keras
# from keras.models import Sequential
# from keras.layers import Activation, Dense
# from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
import os
# import numpy as np
# import cv2
cwd = os.getcwd()
model= keras.models.load_model("ddornot.h5")
model.summary()
validation_datagen = ImageDataGenerator(rescale=1/255)
# Flow validation images in batches of 19 using valid_datagen generator
validation_generator = validation_datagen.flow_from_directory(
cwd + '/images/dd_notadd/testimage', # This is the source directory for validation images
classes = ['dd', 'notadd'],
target_size=(224, 224), # All images will be resized to 200x200
batch_size=1,
# Use binary labels
class_mode='binary',
shuffle=False)
STEP_SIZE_TEST=validation_generator.n//validation_generator.batch_size
validation_generator.reset()
preds = model.predict(validation_generator,
verbose=1)
print(preds)
# testimagefilename = cwd + '/images/dd_notadd/testimage/testimage.jpeg'
# img = cv2.imread(testimagefilename)
# img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
# img = cv2.resize(img,(224,224))
# img = np.expand_dims(img, axis=0)
# print(img.shape)
# img_class = model.predict(img)
I am working on keypoint detection, specifically identifying the left eye, right eye, and mouth of a cat.
For example, there is a 64x64 image of a cat.
And I created an image with circles on the left eye, right eye, and mouth of the cat.
I have created ImageDataGenerators for normal images:
train_datagen = ImageDataGenerator(
featurewise_center=False,
featurewise_std_normalization=False,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.2)
train_generator = train_datagen.flow_from_directory(
train_path,
target_size=(64, 64),
batch_size=32,
seed=1,
subset='training')
validation_generator = train_datagen.flow_from_directory(
val_path,
target_size=(64, 64),
batch_size=32,
seed=1,
subset='validation')
Also for images with keypoints:
heatmap_train_datagen = ImageDataGenerator(
featurewise_center=False,
featurewise_std_normalization=False,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.2)
heatmap_train_generator = heatmap_train_datagen.flow_from_directory(
heatmap_train_path,
target_size=(img_height, img_width),
batch_size=32,
seed=1,
subset='training')
heatmap_validation_generator = heatmap_train_datagen.flow_from_directory(
heatmap_val_path,
target_size=(img_height, img_width),
batch_size=32,
seed=1,
subset='validation')
Then zipped them together:
zipped_train_generator = zip(train_generator, heatmap_train_generator)
I have this model:
Layer (type) Output Shape Param #
input_1 (InputLayer) [(None, 64, 64, 3)] 0
block1_conv1 (Conv2D) (None, 64, 64, 64) 1792
block1_conv2 (Conv2D) (None, 64, 64, 64) 36928
block1_pool (MaxPooling2D) (None, 32, 32, 64) 0
block2_conv1 (Conv2D) (None, 32, 32, 128) 73856
block2_conv2 (Conv2D) (None, 32, 32, 128) 147584
bottleneck_1 (Conv2D) (None, 32, 32, 160) 5243040
bottleneck_2 (Conv2D) (None, 32, 32, 160) 25760
upsample_1 (Conv2DTranspose) (None, 64, 64, 3) 1920
Total params: 5,530,880
Trainable params: 5,530,880
Non-trainable params: 0
I am training the model:
history = model.fit((pair for pair in zipped_train_generator),
epochs=30,
validation_data = (validation_generator,heatmap_validation_generator)
)
It is working for more than 1 hour and it seems never ends:
Is this the right way to detect keypoints? If no, where I am doing wrong? How should I implement it?
I've trained a model with pre-trained word embeddings like this:
embedding_matrix = np.zeros((vocab_size, 100))
for word, i in text_tokenizer.word_index.items():
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
embedding_layer = Embedding(vocab_size,
100,
embeddings_initializer=Constant(embedding_matrix),
input_length=50,
trainable=False)
With the architecture looking like this:
sequence_input = Input(shape=(50,), dtype='int32')
embedded_sequences = embedding_layer(sequence_input)
text_cnn = Conv1D(filters=5, kernel_size=5, padding='same', activation='relu')(embedded_sequences)
text_lstm = LSTM(500, return_sequences=True)(embedded_sequences)
char_in = Input(shape=(50, 18, ))
char_cnn = Conv1D(filters=5, kernel_size=5, padding='same', activation='relu')(char_in)
char_cnn = GaussianNoise(0.40)(char_cnn)
char_lstm = LSTM(500, return_sequences=True)(char_in)
merged = concatenate([char_lstm, text_lstm])
merged_d1 = Dense(800, activation='relu')(merged)
merged_d1 = Dropout(0.5)(merged_d1)
text_class = Dense(len(y_unique), activation='softmax')(merged_d1)
model = Model([sequence_input,char_in], text_class)
When I go to convert the model to json, I get this error:
ValueError: can only convert an array of size 1 to a Python scalar
Similarly, if I use the model.save() function, it seems to save correctly, but when I go to load it, I get Type Error: Expected Float32.
My question is: is there something I am missing when trying to serialize this model? Do I need some sort of Lambda layer or something of the sorts?
Any help would be greatly appreciated!
You can use the weights argument in Embedding layer to provide initial weights.
embedding_layer = Embedding(vocab_size,
100,
weights=[embedding_matrix],
input_length=50,
trainable=False)
The weights should remain non-trainable after model saving/loading:
model.save('1.h5')
m = load_model('1.h5')
m.summary()
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_3 (InputLayer) (None, 50) 0
__________________________________________________________________________________________________
input_4 (InputLayer) (None, 50, 18) 0
__________________________________________________________________________________________________
embedding_1 (Embedding) (None, 50, 100) 1000000 input_3[0][0]
__________________________________________________________________________________________________
lstm_4 (LSTM) (None, 50, 500) 1038000 input_4[0][0]
__________________________________________________________________________________________________
lstm_3 (LSTM) (None, 50, 500) 1202000 embedding_1[0][0]
__________________________________________________________________________________________________
concatenate_2 (Concatenate) (None, 50, 1000) 0 lstm_4[0][0]
lstm_3[0][0]
__________________________________________________________________________________________________
dense_2 (Dense) (None, 50, 800) 800800 concatenate_2[0][0]
__________________________________________________________________________________________________
dropout_2 (Dropout) (None, 50, 800) 0 dense_2[0][0]
__________________________________________________________________________________________________
dense_3 (Dense) (None, 50, 15) 12015 dropout_2[0][0]
==================================================================================================
Total params: 4,052,815
Trainable params: 3,052,815
Non-trainable params: 1,000,000
__________________________________________________________________________________________________
I hope you are saving the model after compiling. Like:
model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
To save model, you can do:
from keras.models import load_model
model.save('model.h5')
model = load_model('model_detect1.h5')
model_json = model.to_json()
with open("model.json", "w") as json_file:
json_file.write(model_json)
To load model,
from keras.models import model_from_json
json_file = open('model.json', 'r')
model_json = json_file.read()
model = model_from_json(model_json)
model.load_weights("model.h5")
I tried multiple methods . The problem is when we work in the embedding layer, then pickle doesnt work, and is not able to save the data.
SO what you can do , when you have some layers like these:-
## Creating model
embedding_vector_features=100
model=Sequential()
model.add(Embedding(voc_size,embedding_vector_features,input_length=sent_length))
model.add(LSTM(100))
model.add(Dense(1,activation='sigmoid'))
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])
print(model.summary())
then, u can use
h5 extension to d=save file, and then convert that to json, model converetd to model2 here
from tensorflow.keras.models import load_model
model.save('model.h5')
model = load_model('model.h5')
model_json = model.to_json()
with open("model.json", "w") as json_file:
json_file.write(model_json)
and this to load data:-
from tensorflow.keras.models import model_from_json
json_file = open('model.json', 'r')
model_json = json_file.read()
model2 = model_from_json(model_json)
model2.load_weights("model.h5")