Get Mosek License's usage stats - mosek

We have purchased multiple Mosek Floating Licenses
We want to get Mosek License's usage information (i.e. which employee was using the license at what point of time). Something like this:
Although, there's seems to be a low level log file lmgrd.log (which logs every license request), but this requires implementing a parser layer to extract info.
We have the following questions:
Does Mosek give any out of the box utility (preferably through its CVXPY API) to get this license usage information?
If not, what is the best way to achieve this in Mosek?
Finally, if extracting info from lmgrd.log is the only option - then what is the structure / format of that lmgrd.log?

MOSEK has no utility, especially not through CVXPY. The MOSEK distribution includes a set of administrative tools such as lmtools, lmutil and so on from Flexera, which can be used to obtain various information. The most comprehensive guide to those is the FlexNet License Administration Guide which is linked just at the beginning of https://www.mosek.com/documentation/ That guide is the best place to start.

Related

What is needed for a recommendation engine based on word/text input

I'm new to the Machine-Learning (AI) technology. I'm developing a messenger app for Android/IOs where I would like to recommend the users based on the texts/word/conversation a product from a relative small product portfolio.
Example 1:
In case the user of the messenger writes a sentence including the words "vine", "dinner", "date" the AI should recommend a bottle of vine to the user.
Example 2:
In case the user of the app writes that he has drunk a good coffee this morning, the AI should recommend a mug to the user.
Example 3:
In case the user writes something about a cute boy she met last day, the AI should recommend a "teddy bear" to the user.
I'm a Software Developer since almost 20 year with experience in the development of C/C++/Java based application (Android and IOs apps) as well as some experience in Google Cloud Platform. The ML/AI technology is completely new to me. Okay, I know the basics (input data is needed to train the ML/AI system etc.), but I wonder If there is already a framework which could help me to develop such a system which solves the above described uses-case.
I would appreciate it, if you could give me some hints where and how to start.
Thank you and regards
It is definitely possible to implement such an application, in case you want to do it in Google Cloud you will need some understanding of Tensorflow.
First of all, I recommend to you to do the Machine Learning Crash Course, for a good introduction to Machine Learning and to start to familiarize yourself with TensorFlow. Afterwards I recommend to take a look into Tensorflow tutorials which will give you a more practical introduction to Tensorflow, and include various examples on building/training/testing models.
Once you are famirialized with Tensorflow, you can jump into learning how to run jobs in the Machine Learning engine, you can start by following the quickstart. The documentation includes detailed guides on how to use the ml-engine, plus multiple samples and tutorials.
Since I believe that your application would fall into the Recommender System type, here you can see an example model, in Google Cloud ML Engine, on how to recommend items to users based on his previous searches. In your case, you would have to build a model in order to recommend items to users based on his previous words in the sentence.
The second option, in case you don't want to go through the hassle of building a new model from scratch, would be to use the Google Cloud Natural Language API, which you can understand as pre-trained models using Google (incredibly big) data. In your case, I believe that the Content Classifying API would help you achieve what your application intends to do, however, the outputs (which you can see here) are limited to what the model was trained to do, and might not be specific enough for your application, however it is an easy solution and you can still profit of this API in order to extract labels/information and send it as input to another model.
I hope that these links provide you with some foundations on what is possible to do with Tensorflow in the ML Engine, and are useful to you.

Number of results google (or other) search programmatically

I am making a little personal project.
Ideally I would like to be able to make programmatically a google search and have the count of results. (My goal is to compare the results count between a lot (100000+) of different phrases).
Is there a free way to make a web search and compare the popularity of different texts, by using Google Bing or whatever (the source is not really important).
I tried Google but seems that freely I can do only 10 requests per day.
Bing is more permissive (5000 free requests per month).
Is there other tools or way to have a count of number of results for a particular sentence freely ?
Thanks in advance.
There are several things you're going to need if you're seeking to create a simple search engine.
First of all you should read and understand where the field of information retrieval started with G. Salton's paper or at least read the wiki page on the vector space model. It will require you learning at least some undergraduate linear algebra. I suggest Gilbert Strang's MIT video lectures for this.
You can then move to the Brin/Page Pagerank paper which outlays the original concept behind the hyperlink matrix and quickly calculating eigenvectors for ranking or read the wiki page.
You may also be interested in looking at the code for Apache Lucene
To get into contemporary search algorithm techniques you need calculus and regression analysis to learn machine learning and deep learning as the current google search has moved away from Pagerank and utilizes these. This is partially due to how link farming enabled people to artificially engineer search results and the huge amount of meta data that modern browsers and web servers allow to be collected.
EDIT:
For the webcrawler only portion I'd recommend WebSPHINX. I used this in my senior research in college in conjunction with Lucene.

Automated Design in CAD, Analysis in FEA, and Optimization

I would like to optimize a design by having an optimizer make changes to a CAD file, which is then analyzed in FEM, and the results fed back into the optimizer to make changes on the design based on the FEM, until the solution converges to an optimum (mass, stiffness, else).
This is what I envision:
create a blueprint of the part in a CAD software (e.g. CATIA).
run an optimizer code (e.g. fmincon) from within a programming language (e.g. Python). The parameters of the optimizer are parameters of the CAD model (angles, lengths, thicknesses, etc.).
the optimizer evaluates a certain design (parameter set). The programming language calls the CAD software and modifies the design accordingly.
the programming language extracts some information (e.g. mass).
then the programming language extracts a STEP file and passes it a FEA solver (e.g. Abaqus) where a predefined analysis is performed.
the programming language reads the results (e.g. max van Mises stress).
the results from CAD and FEM (e.g. mass and stress) are fed to the optimizer, which changes the design accordingly.
until it converges.
I know this exists from within a closed architecture (e.g. isight), but I want to use an open architecture where the optimizer is called from within an open programming language (ideally Python).
So finally, here are my questions:
Can it be done, as I described it or else?
References, tutorials please?
Which softwares do you recommend, for programming, CAD and FEM?
Yes, it can be done. What you're describing is a small parametric structural sizing multidisciplinary optimization (MDO) environment. Before you even begin coding up the tools or environment, I suggest doing some preliminary work on a few areas
Carefully formulate the minimization problem (minimize f(x), where x is a vector containing ... variables, subject to ... constraints, etc.)
Survey and identify individual tools of interest
How would each tool work? Input variables? Output variables?
Outline in a Design Structure Matrix (a.k.a. N^2 diagram) how the tools will feed information (variables) to each other
What optimizer is best suited to your problem (MDF?)
Identify suitable convergence tolerance(s)
Once the above steps are taken, I would then start to think MDO implementation details. Python, while not the fastest language, would be an ideal environment because there are many tools that were built in Python to solve MDO problems like the one you have and the low development time. I suggest going with the following packages
OpenMDAO (http://openmdao.org/): a modern MDO platform written by NASA Glenn Research Center. The tutorials do a good job of getting you started. Note that each "discipline" in the Sellar problem, the 2nd problem in the tutorial, would include a call to your tool(s) instead of a closed-form equation. As long as you follow OpenMDAO's class framework, it does not care what each discipline is and treats it as a black-box; it doesn't care what goes on in-between an input and an output.
Scipy and numpy: two scientific and numerical optimization packages
I don't know what software you have access to, but here are a few tool-related tips to help you in your tool survey and identification:
Abaqus has a Python API (http://www.maths.cam.ac.uk/computing/software/abaqus_docs/docs/v6.12/pdf_books/SCRIPT_USER.pdf)
If you need to use a program that does not have an API, you can automate the GUI using Python's win32com or Pywinauto (GUI automation) package
For FEM/FEA, I used both MSC PATRAN and MSC NASTRAN on previous projects since they have command-line interfaces (read: easy to interface with via Python)
HyperSizer also has a Python API
Install Pythonxy (https://code.google.com/p/pythonxy/) and use the Spyder Python IDE (included)
CATIA can be automated using win32com (quick Google search on how to do it: http://code.activestate.com/recipes/347243-automate-catia-v5-with-python-and-pywin32/)
Note: to give you some sort of development time-frame, what you're asking will probably take at least two weeks to develop.
I hope this helps.

Semantic techniques in IOT

I am trying to use semantic technologies in IOT. From the last two months I am doing literature survey and during this time I came to know some of the tools required like (protege, Apache Jena). Now along with reading papers I want to play with semantic techniques like annotation, linking data etc so that I can get the better understanding of the concepts involved. For the same I have put the roadmap as:
Collect data manually (using sensors) or use some data set already on the web.
Annotate the dataset and possibly use ontology (not sure)
Apply open linking data principles
I am not sure whether this road map is correct or not. I am asking for suggestions in following points
Is this roadmap correct?
How should I approach for steps 2 and 3. In other words which tools should I use for these steps?
Hope you guys can help me in finding a proper way for handling this issue. Thanks
Semantics and IoT (or semantic sensor web [1]) is a hot topic. Congratulations that you choose a interesting and worth pursuing research topic.
In my opinion, your three steps approach looks good. I would recommend you to do a quick prototype so you can learn the possible challenges early.
In addition to the implementation technologies (Portege, etc.), there are some important works might be useful for you:
Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE). [2] It is an important work for sharing and exchanging sensor observation data. Many large organizations (NOAA, NASA, NRCan, AAFC, ESA, etc.) have adopted this standard. This standard has defined a conceptual data model/ontology (O&M, ISO 19156). Note: this is a very comprehensive standard, hence it's very BIG and can be time consuming to read. I recommend to read #2 mentioned below.
OGC SensorThings API (http://ogc-iot.github.io/ogc-iot-api/), a IoT cloud API standard based on the OGC SWE. This might be most relevant to you. It is a light-weight protocol of the SWE family, and designed specifically for IoT. Some early research work has been done to use JSON-LD to annotate SensorThings.
W3C Spatial Data on Web (http://www.w3.org/2015/spatial/wiki/Main_Page). It is an on-going joint work between W3C and OGC. Part of the goal is to mature SSN (Semantic Sensor Network) ontology. Once it's ready, the new SSN can be used to annotate SensorThings API for example. A work worth to monitor.
[1] Sheth, Amit, Cory Henson, and Satya S. Sahoo. "Semantic sensor web." Internet Computing, IEEE 12.4 (2008): 78-83.
[2] Bröring, Arne, et al. "New generation sensor web enablement." Sensors 11.3 (2011): 2652-2699.

Data Visualization: Plotting friendship relations

I guess those who have worked in communities and social networks might have some experience in this.
I am trying to plot a graph of all the friendships that exists on my site and in doing so identify clusters of strongly interconnected users.
Does anyone have any experience in doing something like this? Also, does SQL Server 2008 BI have tools that allows for this type of modelling?
Thanks
Programming Collective Intelligence's chapter 5 is dedicated to optimization and network visualization. Using the modules available here and the snippet below, I could make the following image:
>>> import optimization
>>> import socialnetwork
>>> sol = optimization.annealingoptimize(socialnetwork.domain, socialnetwork.crosscount, step=50, cool=0.99)
>>> socialnetwork.drawnetwork(sol)
The advantages of this approach is that you can easily change the cost function, use different optimization algorithms, or use another library to view the solution.
Take a look at neato from the Graphviz command line tool suite. AS input it takes a so called .dot file. The format is straight forward you should just be able to iterate over all friendship relations in your system and write them into the file.
For inspiration, take a look at these social graphs from "Visual Complexity" collection.
Many visualizations have explanatory papers and articles mentioning graphing tools, libraries and algorithms used to obtain the images.
Examples from "Social Networks" category:
Your graph will be probably reasonably large, so GraphViz is a poor choice. It does a nice job for tiny graphs, but not for huge ones. I'd recommend that you try aiSee instead (here are some example graphs). It requires graphs to be specified in a simple human-readable format called GDL.
(source: aisee.com)
Sample social network http://www.aisee.com/graph_of_the_month/pubmed5.gif
(source: aisee.com)
For visualization, have a look at the Javascript Infovis Toolkit.
You might take a look at the Girvan-Newman algorithm, the output of which gives you an idea of community structure in the form of a dendrogram.
You should look at Mark Shepherd's SpringGraph which is a neat and sexy way of showing big graphs.
Please take a look at the prefuse visualization toolkit
Check out Wikipedia -- Social Network which does talk about social network analysis and graphing relations between users. I think the basic idea is you use a graph to map all the relations and then the more shared relations there are, the higher the interconnected relationships.