How can I prevent a table not having references pointing to it? - sql

I have these tables:
CREATE TABLE s_users (
user_id serial PRIMARY KEY,
username text
);
CREATE TABLE s_projects (
project_id serial PRIMARY KEY,
projectname text
);
CREATE TYPE s_MEMBERSHIP_TIER AS ENUM ('pending', 'member', 'admin');
CREATE TABLE s_memberships (
user_id INT NOT NULL,
project_id INT NOT NULL,
membership_tier MEMBERSHIP_TIER,
CONSTRAINT s_one_membership_type
UNIQUE(user_id, project_id)
);
I want to ensure that it will be impossible to get to a situation where:
(1) a membership refers to a project or user that doesn't exist, and
(2) a project is without members.
I think I can achieve (1) by changing the first rows in CREATE TABLE s_memberships ( to
user_id INT NOT NULL REFERENCES s_users ON DELETE CASCADE ON UPDATE CASCADE,
project_id INT NOT NULL REFERENCES s_projects ON DELETE CASCADE ON UPDATE CASCADE,
But how can I avoid a project without members?
I.e.
INSERT INTO s_users (username) values ('mickey');
INSERT INTO s_users (username) values ('donald');
INSERT INTO s_projects (projectname) values ('p1'); -- this should not succeed to create a project without any members.
I've tried something like:
ALTER TABLE s_projects ADD CONSTRAINT pid FOREIGN KEY(project_id) REFERENCES s_memberships(project_id);
But I'm getting an error:
ERROR: there is no unique constraint matching given keys for referenced table "s_memberships"
Is there some other constraint I can add? Or, alternatively, is there a better way to organise my tables?

There are two options I can think of:
You create a foreign key from s_projects to s_membership that identifies a "special member" (project leader?) that must always be there.
You have a column member_count in s_project that is maintained by a trigger on s_membership, so that it always contains the number of members in that project. Then you place a check constraint on s_project that forces that number to be greater than 0.

A project without members is quite tricky. You can't insert a membership unless there is a project. And you want to requite that a project has members.
One solution is to use a deferrable constraint so you can insert both rows at the same time. You can alter the table to defer the constraint check, insert the rows, and then undefer the constraint.
However, I prefer other solutions.
One is to include a member count in projects. Maintaining this requires triggers -- which are yucky -- but you can then get "active" projects using a where clause: where num_members > 0.
Or just create a view:
create view active_projects as
select p.*
from projects p
where exists (select 1 from memberships m where m.project_id = p.project_id);
In other words, these solutions allow "inactive" projects, but then just hide them when desired.

Related

How to disable delete on table for certain id in h2?

Lets suppose we have student table in h2 and every student has id (primary key). Is it possible to implement trigger (or another mechanism) to disable delete operation if id == 100. I want to have such protection on DB level, but not on application level.
One solution is obviously a trigger that prevents deleting or changing the value.
Another method is to use a foreign key constraint. Create a table of ids that you want to keep and use a foreign key reference:
create table keep_these_students (
student_id int,
constraint fk_keep_these_students_student_id foreign key (student_id) references students(id)
);
insert into keep_these_students (student_id)
values (100);
The foreign key definition will require that the row cannot be deleted if the id changes. And, it is easy to add additional ids -- without changing triggers.

Is a single field contain multiple foreign key relationship from different table [SQL]

I have 3 table Student,Teacher,User.
Student:
CREATE TABLE Student( id INT NOT NULL PRIMARY KEY,name VARCHAR(50) NOT NULL);
INSERT INTO [dbo].[Student]([id],[name]) VALUES(4,'Ram'),(5,'Raman');
Teacher:
CREATE TABLE Teacher( id INT NOT NULL PRIMARY KEY,name VARCHAR(50) NOT NULL);
INSERT INTO [dbo].[Student]([id],[name]) VALUES(1,'Raj'),(2,'Rahul');
User:
CREATE TABLE [dbo].[User](
id INT NOT NULL PRIMARY KEY,
user_id INT NOT NULL,
user_type CHAR(1) NOT NULL,
user_name VARCHAR(10) NOT NULL,
user_password VARCHAR(255) NOT NULL,
CONSTRAINT FOREIGN KEY (user_id) REFERENCES Student (id),
CONSTRAINT FOREIGN KEY (user_id) REFERENCES Teacher (id) );
Now I try to INSERT in User table with below query
INSERT INTO [dbo].[User] ([id] ,[user_id] ,[user_type],[user_name] ,[user_password]) VALUES (1 ,1,'S','Raj_001','********')
It gives me error for violation of foreign key due to
value of user_id is available in Teacher and not in Student
So my question is: How can I achieve that a value of user_id is present in one of those table and data should be inserted in User table.
Your table structure is flawed. A foreign key tells the database that there is definitely one and only one row on one side of the relationship. You can't have a partial match, it's all or nothing. This is before considering how you would ensure that you don't end up with the same id in both the teacher and student table.
It would be better to have two columns in your user table, one for teacher id and one for student id. In fact going further given the only extra data in both student and teacher tables is their name why not just eliminate both and store the name in the user table?
Another option to consider is that your foreign key is pointed in the wrong direction. Perhaps a better approach is reversing it to ensure each student and teacher is a user rather than that a user is either a student or a teacher.
First of all get rid of those key words from table name like [User],user_id etc.
It really is problematic and irritating.
Secondly why 2 key in [User] table,id, user_id ? It is not require.
I will keep only id or user_id.
Thirdly, knowing the real table structure or even purpose of each table help in better data modeling.
From [User] table what it appear is that id and user_type are composite primary key.
It should be. If this is true then you can't define FK constraint, as user_type is not available in either Teacher table and Student Table.
And what is appear that ,for example first data is inserted in Student or Teacher then data is inserted in User table in same Transaction.
So in all above scenario, Instead of Trigger is ideal scenario in this condition.
My script is just demo,
Create Proc spStudentInsert
as
set nocount on
set xact_abort on
begin try
begin tran
--bulk insert or single insert ,no problem
insert into Student
insert into [User]
if (##Trancount>0)
commit
end try
begin catch
if (##Trancount>0)
rollback
end catch
CREATE TRIGGER INSTEADOF_TR_I_User ON [user]
INSTEAD OF INSERT
AS
BEGIN
DECLARE #Flag BIT = 1
IF NOT EXISTS (
SELECT 1
FROM Student S
INNER JOIN inserted i ON i.id = S.id
)
SET #Flag = 0
ELSE IF NOT EXISTS (
SELECT 1
FROM Teacher T
INNER JOIN inserted i ON i.id = T.id
)
AND #Flag = 1
SET #Flag = 0
IF (#Flag = 0)
BEGIN
RAISERROR (
N'Invalid user'
,16
,1
)
RETURN
END
END
In case I am wrong about id, user_type composite PK then you can do other way,
PK of User id is FK in Student table as well as Teacher table.
Also , id are PK in their respective table.
So first you insert in User table then you insert in Student or Teacher table.
So design in this case will be,
CREATE TABLE [dbo].[User](
id INT NOT NULL ,
user_type CHAR(1) NOT NULL,
user_name VARCHAR(10) NOT NULL,
user_password VARCHAR(255) NOT NULL,
CONSTRAINT [PK_user] PRIMARY KEY (id)
)
INSERT INTO [dbo].[User] ([id] ,[user_type],[user_name] ,[user_password])
VALUES (1 ,1,'S','Ram_001','********')
--drop table [User]
--alter table [user]
-- drop constraint PK_user
CREATE TABLE Student( id INT NOT NULL PRIMARY KEY,name VARCHAR(50) NOT NULL);
ALTER TABLE Student
add CONSTRAINT FK_StudentUser FOREIGN KEY (id) REFERENCES [User] (id);
INSERT INTO [dbo].[Student]([id],[name]) VALUES(1,'Ram'),(5,'Raman');
--select * from [Student]
CREATE TABLE Teacher( id INT NOT NULL PRIMARY KEY,name VARCHAR(50) NOT NULL);
ALTER TABLE Teacher
add CONSTRAINT FK_TeacherUser FOREIGN KEY (id) REFERENCES [User] (id);
INSERT INTO [dbo].Teacher([id],[name]) VALUES(1,'Raj'),(2,'Rahul');
So what it appear from your question, I will create Instead of Trigger and go with that model.
There are two ways to do this without re-doing your table schema
Create a 4th table that contains the union of ID from Student and Teacher. Presumably, you would insert to that table whenever you insert into Student and Teacher, and then have the constraint act against that table.
Create a custom function based constraint rather than a foreign key which looks up against a union of both the student and teacher tables.
Neither of these are great/clean solutions, and as others have noted, you probably are dealing with the fact that the schema isn't ideal.
Still, if you're just modifying an existing system (and I assume this is a simplified version of what you're actually dealing with), then one of the two solutions I mentioned id easier than redoing the schema.
Your foreign key definition has some logical problems. It forces the user_id to exists in both tables. The solution here is depended on the business needs and real data.
You can create a Person table with 1-1 relation to the student and the Teacher tables and then use the Person.Id column in the foreign key definition. This solution assumes that the students' and teachers' data may change differently.
As another way (which is explained in other answers), If your student and teachers' data is similar, you can combine both tables, and difference data by one added "Type" column.
SO you want to tell the system that your User must be in one of your tables .
it's not possible in databases logic but you can write a script that have a condition (IF exist) then insert you user data
notice : you have to remove your foreign keys .
its a wrong logic !
you are telling your system that your user is a student and a teacher to !
that is absolutely wrong .
I feel like there were some excellent responses in this thread, but I'm going to take a stab at giving you a different direction. I'll try to be clear on why, and try to acknowledge your situation as I do so.
Student/Teacher Data is Often Messy
As someone with experience normalizing data sets in higher education, the issue you've run into resonated with me. Educational users could be in all three categories (Student, Teacher, and User) or just one of them, depending on the how and why the category was linked. Worse, they can enter from multiple directions and end up with multiple unlinked accounts. More mature institutions and tools have protections against this, but I still see user-created databases and ten year old 'it was temporary' solutions that cause me existential pain.
The Main Stumbling Block
Any database with tables that independently define who is a user based on different criteria have a potential point of failure.
Foreign keys was the right direction to be thinking in for this problem. You want these tables to connect and you want them to stay consistent with one another, regardless of which side of the data gets altered. We just need to add a little extra.
One Table To Rule Them All
Before I go further, I want to say that it is possible to get all of the fields you're tracking into a single table, but having multiple tables with distinct purposes is an easy way to protect against changes later.
The foreign key table must inherit the key from another table, but people often say foreign keys can't be primary keys as well. Why?
Foreign keys are not automatically unique keys in the tables they're in. If there can be multiple fields tied to that same key, the table ends up worthless.
We fix that with the Unique constraint. Applied to a foreign key field, Unique essentially makes it act as a primary key would.
Sample Method
Below is an alternative design for what you seemed to be after, creating a master list of IDs that can link across all tables. I tossed in a few minor tracking fields that can be useful for debugging.
/*Create Tables*/
CREATE TABLE ID(
USER_ID int NOT NULL PRIMARY KEY AUTO_INCREMENT,
USER_CREATED timestamp
);
CREATE TABLE USER(
USER_ID int NOT NULL UNIQUE FOREIGN KEY REFERENCES ID(USER_ID),
USER_LOGIN VARCHAR(10) NOT NULL UNIQUE,
USER_PASSWORD VARCHAR(255) NOT NULL,
USER_NAME VARCHAR(50) NOT NULL
);
CREATE TABLE PERMISSIONS(
USER_ID int NOT NULL UNIQUE FOREIGN KEY REFERENCES ID(USER_ID),
STUDENT CHAR(1),
TEACHER CHAR(1)
);
This creates a flag for student and teacher that could both be true or both be false. If you want the code to force them into only one or the other, you can still have the permissions table do a USER_TYPE field instead. I suggest a null or neither value being possible in either case if you plan to use this for any length of time. Best of luck.

SQL How to not insert duplicated values

I'm trying to create a procedure that inserts data into a table of registers but i don't want to repeat the second parameter, this is the table
CREATE TABLE Inscription
(
idClass INT references tb_class,
idStudent INT references tb_student,
)
The idea is that a student (idStudent) can register in various classes but not in the same class (idClass), I tried to add a unique constraint in the idStudent column but that only allows a student to register in one single class.
I always suggest that all tables have a numeric primary key. In addition, your foreign key references are not correct. And what you want to do is add a unique constraint.
The exact syntax depends on the database. The following is for SQL Server:
CREATE TABLE Inscriptions (
idInscription int identity(1, 1) primary key
idClass int references tb_classes(idClass),
idStudent int references tb_students(idStudnt)
unique (idClass, idStudent)
);
Notice that I name the tables as the plural of the entity, but the id using the singular.
The Inscriptions table probably wants other columns as well, such as the date/time of the inscription, the method, and other related information.
You are looking to create a constraint on your table that includes both columns idClass and idStudent.
Once that constraint is created, an attempt to insert duplicate class/student will result in an error being raised.
As your table does not seem to include a primary key, you would better make that constraint your primary key.
NB : you did not tell which RDBMS you are using hence cannot give you the exact syntax to use...
Your unique key needs to encompass both idClass and idStudent, so any particular combination cannot repeat itself.

Postgres create table error

I am trying to create my very first table in postgres, but when I execute this SQL:
create table public.automated_group_msg (
automated_group_msg_idx integer NOT NULL DEFAULT nextval ('automated_group_msg_idx'::regclass),
group_idx integer NOT NULL,
template_idx integer NOT NULL,
CONSTRAINT automated_group_msg_pkey PRIMARY KEY (automated_group_msg_idx),
CONSTRAINT automated_group_msg_group_idx_fkey FOREIGN KEY (group_idx)
REFERENCES public.groups (group_idx) MATCH SIMPLE
ON UPDATE CASCADE ON DELETE CASCADE,
CONSTRAINT automated_msg_template_idx_fkey FOREIGN KEY (template_idx)
REFERENCES public.template (template_idx) MATCH SIMPLE
ON UPDATE CASCADE ON DELETE CASCADE
)
WITH (
OIDS = FALSE
);
I get the following error:
ERROR: relation "automated_group_msg_idx" does not exist
Your error is (likely) because the sequence you're trying to use doesn't exist yet.
But you can create a sequence on the fly using this syntax:
create table public.automated_group_msg (
id serial primary key,
... -- other columns
)
Not directly related to your question, but naming columns with the table name in the name of the column is generally speaking an anti-pattern, especially for primary keys for which id is the industry standard. It also allows for app code refactoring using abstract classes whose id column is always id. It's crystal clear what automated_group_msg.id means and also crystal clear that automated_group_msg.automated_group_msg_id is a train wreck and contains redundant information. Attribute column names like customer.birth_date should also not be over-decorated as customer.customer_birth_date for the same reasons.
You just need to create the sequence before creating the table
CREATE SEQUENCE automated_group_msg_idx;

Correct way to create a table that references variables from another table

I have these relationships:
User(uid:integer,uname:varchar), key is uid
Recipe(rid:integer,content:text), key is rid
Rating(rid:integer, uid:integer, rating:integer) , key is (uid,rid).
I built the table in the following way:
CREATE TABLE User(
uid INTEGER PRIMARY KEY ,
uname VARCHAR NOT NULL
);
CREATE TABLE Recipes(
rid INTEGER PRIMARY KEY,
content VARCHAR NOT NULL
);
Now for the Rating table: I want it to be impossible to insert a uid\rid that does not exist in User\Recipe.
My question is: which of the following is the correct way to do it? Or please suggest the correct way if none of them are correct. Moreover, I would really appreciate if someone could explain to me what is the difference between the two.
First:
CREATE TABLE Rating(
rid INTEGER,
uid INTEGER,
rating INTEGER CHECK (0<=rating and rating<=5) NOT NULL,
PRIMARY KEY(rid,uid),
FOREIGN KEY (rid) REFERENCES Recipes,
FOREIGN KEY (uid) REFERENCES User
);
Second:
CREATE TABLE Rating(
rid INTEGER REFERENCES Recipes,
uid INTEGER REFERENCES User,
rating INTEGER CHECK (0<=rating and rating<=5) NOT NULL,
PRIMARY KEY(rid,uid)
);
EDIT:
I think User is problematic as a name for a table so ignore the name.
Technically both versions are the same in Postgres. The docs for CREATE TABLE say so quite clearly:
There are two ways to define constraints: table constraints and column constraints. A column constraint is defined as part of a column definition. A table constraint definition is not tied to a particular column, and it can encompass more than one column. Every column constraint can also be written as a table constraint; a column constraint is only a notational convenience for use when the constraint only affects one column.
So when you have to reference a compound key a table constraint is the only way to go.
But for every other case I prefer the shortest and most concise form where I don't need to give names to stuff I'm not really interested in. So my version would be like this:
CREATE TABLE usr(
uid SERIAL PRIMARY KEY ,
uname TEXT NOT NULL
);
CREATE TABLE recipes(
rid SERIAL PRIMARY KEY,
content TEXT NOT NULL
);
CREATE TABLE rating(
rid INTEGER REFERENCES recipes,
uid INTEGER REFERENCES usr,
rating INTEGER NOT NULL CHECK (rating between 0 and 5),
PRIMARY KEY(rid,uid)
);
This is a SQL Server based solution, but the concept applies to most any RDBMS.
Like so:
CREATE TABLE Rating (
rid int NOT NULL,
uid int NOT NULL,
CONSTRAINT PK_Rating PRIMARY KEY (rid, uid)
);
ALTER TABLE Rating ADD CONSTRAINT FK_Rating_Recipies FOREIGN KEY(rid)
REFERENCES Recipies (rid);
ALTER TABLE Rating ADD CONSTRAINT FK_Rating_User FOREIGN KEY(uid)
REFERENCES User (uid);
This ensures that the values inside of Rating are only valid values inside of both the Users table and the Recipes table. Please note, in the Rating table I didn't include the other fields you had, just add those.
Assume in the users table you have 3 users: Joe, Bob and Bill respective ID's 1,2,3. And in the recipes table you had cookies, chicken pot pie, and pumpkin pie respective ID's are 1,2,3. Then inserting into Rating table will only allow for these values, the minute you enter 4 for a RID or a UID SQL throws an error and does not commit the transaction.
Try it yourself, its a good learning experience.
In Postgresql a correct way to implement these tables are:
CREATE SEQUENCE uid_seq;
CREATE SEQUENCE rid_seq;
CREATE TABLE User(
uid INTEGER PRIMARY KEY DEFAULT nextval('uid_seq'),
uname VARCHAR NOT NULL
);
CREATE TABLE Recipes(
rid INTEGER PRIMARY KEY DEFAULT nextval('rid_seq'),
content VARCHAR NOT NULL
);
CREATE TABLE Rating(
rid INTEGER NOT NULL REFERENCES Recipes(rid),
uid INTEGER NOT NULL REFERENCES User(uid),
rating INTEGER CHECK (0<=rating and rating<=5) NOT NULL,
PRIMARY KEY(rid,uid)
);
There is no real difference between the two options that you have written.
A simple (i.e. single-column) foreign key may be declared in-line with the column declaration or not. It's merely a question of style. A third way should be to omit foreign key declarations from the CREATE TABLE entirely and later add them using ALTER TABLE statements; done in a transaction (presumable along with all the other tables, constraints, etc) the table would never exist without its required constraints. Choose whichever you think is easiest fora human coder to read and understand i.e. is easiest to maintain.
EDIT: I overlooked the REFERENCES clause in the second version when I wrote my original answer. The two versions are identical in terms of referential integrity, there are just two ways of syntax to do this.