Can i have redis master in one microservice domain and redis slave used by a different microservice as a way of sharing data? - redis

I have three microservice that needs to communicate between each other. Microservice-1 is incharge of the data and the database(he writes and read to it). I will add a redis cache store for Microservice-1 to cache data there. I want to put a redis-slave for the other 2 microservices to reduce communication with the actual microservice, if the data is already in the cache store. Since all updates to the data, has to go thru the Microservice-1 and he will always update the cache, redis replication will make sure the other two microservices will get it too. Ofcourse, if the data is not in cache, it will call the Microservice-1 for the data, which will update the cache.
Am i missing something, with this approach ?

This will definitely work in the "sunny day" case.
But sometimes there are storms, and in storms there's a chance of losing cache coherency (i.e. the DB and Redis disagree on the data).
For example, lets say that you have Microservice-1 update the DB and then update Redis. What happens if there's a crash between updating the DB and updating Redis?
On the other hand, what if you reverse the ordering (update Redis and then the DB)? Now Redis could be updated and not the DB.
Neither of these in insurmountable, but absent a means of having a transaction which ensures that 0 or 2 of Redis and the DB are updated, there will always be a time window where the change is in one but not the other. In that situation, it's probably worth embracing eventual consistency (e.g. periodically scan the DB and update redis with recently updated records).
As an elaboration on that, a Command Query Responsibility Segregation with Event Sourcing (CQRS/ES) approach may prove useful: Microservice-1 gets split into two services, one which takes commands (requests to update) and another which handles queries. Instead of updating a row in a DB, the command service now appends (in a typical DB, an INSERT) an event which describes what changed. The query service can subscribe to those events and update Redis. Other microservices can also subscribe to the stream of events and update their own views (which can be remixed in any way they want) of Microservice-1's state.

Related

Is there a best practice for offline persistence of Redis into DB?

Our use case is using Redis Cache in our main flow to store centralized data for our processing units in order to improve performance.
In order to persist the data from Redis to the DB we came up with a few approaches:
Writing the data to the DB right when we writing it to Redis (this approach isn't practical as it impacts the performance)
Having a duplicate entry inserted with TTL and listening to Redis events in a different process which in turn will insert them to the DB. (downside is we're losing events in case of this process being down, we can scale out the number of processes for availability in that case)
Having a Redis SortedSet holding the last update time of the entry and ZRange in a different process periodically to query for the last keys to be updated and insert them into the DB. (downside is inserting to the SortedSet is log2n and impacting performance in the main flow)
Is there another approach we're missing? We're using Azure Redis for Cache.
Thanks.

Auto Syncing for Keys in Apache Geode

I have an Apache Geode setup, connected with external Postgres datasource. I have a scenario where I define an expiration time for a key. Let's say after T time the key is going to expire. Is there a way so that the keys which are going to expire can make a call to an external datasource and update the value incase the value has been changed? I want a kind of automatic syncing for my keys which are there in Apache Geode. Is there any interface which i can implement and get the desired behavior?
I am not sure I fully understand your question. Are you saying that the values in the cache may possibly be more recent than what is currently stored in the database?
Whether you are using Look-Aside Caching, Inline Caching, or even Near Caching, Apache Geode combined with Spring would take care of ensuring the cache and database are kept in sync, to some extent depending on the caching pattern.
With Look-Aside Caching, if used properly, the database (i.e. primary System of Record (SOR), e.g. Postgres in your case) should always be the most current. (Look-Aside) Caching is secondary.
With Synchronous Inline Caching (using a CacheLoader/CacheWriter combination for Read/Write-Through) and in particular, with emphasis on CacheWriter, during updates (e.g. Region.put(key, value) cache operations), the DB is written to first, before the entry is stored (or overwritten) in the cache. If the DB write fails, then the cache entry is not written or updated. This is true each time a value for a key is updated. If the key has not be updated recently, then the database should reflect the most recent value. Once again, the database should always be the most current.
With Asynchronous Inline Caching (using AEQ + Listener, for Write-Behind), the updates for a cache entry are queued and asynchronously written to the DB. If an entry is updated, then Geode can guarantee that the value is eventually written to the underlying DB regardless of whether the key expires at some time later or not. You can persist and replay the queue in case of system failures, conflate events, and so on. In this case, the cache and DB are eventually consistent and it is assumed that you are aware of this, and this is acceptable for your application use case.
Of course, all of these caching patterns and scenarios I described above assume nothing else is modifying the SOR/database. If another external application or process is also modifying the database, separate from your Geode-based application, then it would be possible for Geode to become out-of-sync with the database and you would need to take steps to identify this situation. This is rather an issue for reads, not writes. Of course, you further need to make sure that stale cache entries does not subsequently overwrite the database on an update. This is easy enough to handle with optimistic locking. You could even trigger a cache entry remove on an DB update failure to have the cache refreshed on read.
Anyway, all of this is to say, if you applied 1 of the caching patterns above correctly, the value in the cache should already be reflected in the DB (or will be in the Async, Write-Behind Caching UC), even if the entry eventually expires.
Make sense?

Redis: Using lua and concurrent transactions

Two issues
Do lua scripts really solve all cases for redis transactions?
What are best practices for asynchronous transactions from one client?
Let me explain, first issue
Redis transactions are limited, with an inability to unwatch specific keys, and all keys being unwatched upon exec; we are limited to a single ongoing transaction on a given client.
I've seen threads where many redis users claim that lua scripts are all they need. Even the redis official docs state they may remove transactions in favour of lua scripts. However, there are cases where this is insufficient, such as the most standard case: using redis as a cache.
Let's say we want to cache some data from a persistent data store, in redis. Here's a quick process:
Check cache -> miss
Load data from database
Store in redis
However, what if, between step 2 (loading data), and step 3 (storing in redis) the data is updated by another client?
The data stored in redis would be stale. So... we use a redis transaction right? We watch the key before loading from db, and if the key is updated somewhere else before storage, storage would fail. Great! However, within an atomic lua script, we cannot load data from an external database, so lua cannot be used here. Hopefully I'm simply missing something, or there is something wrong with our process.
Moving on to the 2nd issue (asynchronous transactions)
Let's say we have a socket.io cluster which processes various messages, and requests for a game, for high speed communication between server and client. This cluster is written in node.js with appropriate use of promises and asynchronous concepts.
Say two requests hit a server in our cluster, which require data to be loaded and cached in redis. Using our transaction from above, multiple keys could be watched, and multiple multi->exec transactions would run in overlapping order on one redis connection. Once the first exec is run, all watched keys will be unwatched, even if the other transaction is still running. This may allow the second transaction to succeed when it should have failed.
These overlaps could happen in totally separate requests happening on the same server, or even sometimes in the same request if multiple data types need to load at the same time.
What is best practice here? Do we need to create a separate redis connection for every individual transaction? Seems like we would lose a lot of speed, and we would see many connections created just from one server if this is case.
As an alternative we could use redlock / mutex locking instead of redis transactions, but this is slow by comparison.
Any help appreciated!
I have received the following, after my query was escalated to redis engineers:
Hi Jeremy,
Your method using multiple backend connections would be the expected way to handle the problem. We do not see anything wrong with multiple backend connections, each using an optimistic Redis transaction (WATCH/MULTI/EXEC) - there is no chance that the “second transaction will succeed where it should have failed”.
Using LUA is not a good fit for this problem.
Best Regards,
The Redis Labs Team

Redis Persistence Partial

I have multiple keys in redis most of which are insignificant and can be lost in case my redis server goes down.
However I have one or two keys, which I cannot afford to lose.
Hence I would like that whenever the server restarts, redis reads only these few keys from its persistent storage, and keep on persisting these as and when they change.
Does redis have this feature? If yes what command makes a key persisted to file and how to differ b/w persisted and unpersisted keys.
If no, What approach can I use such that I need not make my own persistent file before writing to Redis
Limitations(If the answer is no)
I do not want to change client code that enters in redis.
I cannot add more servers to redis(if any such solution exists, would like to know about it though).
EDIT
Another reason I would not want to save most keys as persistence because it is huge data, hundreds of records per second- Most of which expires in 10 minutes.

Zookeeper vs In-memory-data-grid vs Redis

I've found different zookeeper definitions across multiple resources. Maybe some of them are taken out of context, but look at them pls:
A canonical example of Zookeeper usage is distributed-memory computation...
ZooKeeper is an open source Apache™ project that provides a centralized infrastructure and services that enable synchronization across a cluster.
Apache ZooKeeper is an open source file application program interface (API) that allows distributed processes in large systems to synchronize with each other so that all clients making requests receive consistent data.
I've worked with Redis and Hazelcast, that would be easier for me to understand Zookeeper by comparing it with them.
Could you please compare Zookeeper with in-memory-data-grids and Redis?
If distributed-memory computation, how does zookeeper differ from in-memory-data-grids?
If synchronization across cluster, than how does it differs from all other in-memory storages? The same in-memory-data-grids also provide cluster-wide locks. Redis also has some kind of transactions.
If it's only about in-memory consistent data, than there are other alternatives. Imdg allow you to achieve the same, don't they?
https://zookeeper.apache.org/doc/current/zookeeperOver.html
By default, Zookeeper replicates all your data to every node and lets clients watch the data for changes. Changes are sent very quickly (within a bounded amount of time) to clients. You can also create "ephemeral nodes", which are deleted within a specified time if a client disconnects. ZooKeeper is highly optimized for reads, while writes are very slow (since they generally are sent to every client as soon as the write takes place). Finally, the maximum size of a "file" (znode) in Zookeeper is 1MB, but typically they'll be single strings.
Taken together, this means that zookeeper is not meant to store for much data, and definitely not a cache. Instead, it's for managing heartbeats/knowing what servers are online, storing/updating configuration, and possibly message passing (though if you have large #s of messages or high throughput demands, something like RabbitMQ will be much better for this task).
Basically, ZooKeeper (and Curator, which is built on it) helps in handling the mechanics of clustering -- heartbeats, distributing updates/configuration, distributed locks, etc.
It's not really comparable to Redis, but for the specific questions...
It doesn't support any computation and for most data sets, won't be able to store the data with any performance.
It's replicated to all nodes in the cluster (there's nothing like Redis clustering where the data can be distributed). All messages are processed atomically in full and are sequenced, so there's no real transactions. It can be USED to implement cluster-wide locks for your services (it's very good at that in fact), and tehre are a lot of locking primitives on the znodes themselves to control which nodes access them.
Sure, but ZooKeeper fills a niche. It's a tool for making a distributed applications play nice with multiple instances, not for storing/sharing large amounts of data. Compared to using an IMDG for this purpose, Zookeeper will be faster, manages heartbeats and synchronization in a predictable way (with a lot of APIs for making this part easy), and has a "push" paradigm instead of "pull" so nodes are notified very quickly of changes.
The quotation from the linked question...
A canonical example of Zookeeper usage is distributed-memory computation
... is, IMO, a bit misleading. You would use it to orchestrate the computation, not provide the data. For example, let's say you had to process rows 1-100 of a table. You might put 10 ZK nodes up, with names like "1-10", "11-20", "21-30", etc. Client applications would be notified of this change automatically by ZK, and the first one would grab "1-10" and set an ephemeral node clients/192.168.77.66/processing/rows_1_10
The next application would see this and go for the next group to process. The actual data to compute would be stored elsewhere (ie Redis, SQL database, etc). If the node failed partway through the computation, another node could see this (after 30-60 seconds) and pick up the job again.
I'd say the canonical example of ZooKeeper is leader election, though. Let's say you have 3 nodes -- one is master and the other 2 are slaves. If the master goes down, a slave node must become the new leader. This type of thing is perfect for ZK.
Consistency Guarantees
ZooKeeper is a high performance, scalable service. Both reads and write operations are designed to be fast, though reads are faster than writes. The reason for this is that in the case of reads, ZooKeeper can serve older data, which in turn is due to ZooKeeper's consistency guarantees:
Sequential Consistency
Updates from a client will be applied in the order that they were sent.
Atomicity
Updates either succeed or fail -- there are no partial results.
Single System Image
A client will see the same view of the service regardless of the server that it connects to.
Reliability
Once an update has been applied, it will persist from that time forward until a client overwrites the update. This guarantee has two corollaries:
If a client gets a successful return code, the update will have been applied. On some failures (communication errors, timeouts, etc) the client will not know if the update has applied or not. We take steps to minimize the failures, but the only guarantee is only present with successful return codes. (This is called the monotonicity condition in Paxos.)
Any updates that are seen by the client, through a read request or successful update, will never be rolled back when recovering from server failures.
Timeliness
The clients view of the system is guaranteed to be up-to-date within a certain time bound. (On the order of tens of seconds.) Either system changes will be seen by a client within this bound, or the client will detect a service outage.