Is it okay to use complex control flow in tf.function? - tensorflow

I have the following Python function and I want to wrap it into #tf.function (originally the input arguments are numpy arrays, but for the sake of executing on GPU it's not a problem to convert them to TF tensors).
def reproject(before_frame, motion_vecs):
reprojected_image = np.zeros((before_frame.shape[0], before_frame.shape[1], before_frame.shape[2]))
for row_idx in range(before_frame.shape[0]):
for col_idx in range(before_frame.shape[1]):
for c_idx in range(before_frame.shape[2]):
diff_u = int(round(
(before_frame.shape[1] * motion_vecs[row_idx][col_idx][0])
))
diff_v = int(round(
(before_frame.shape[0] * motion_vecs[row_idx][col_idx][1])
))
before_pixel_position = (
row_idx + diff_v,
col_idx + diff_u
)
if before_pixel_position[0] < before_frame.shape[0] and before_pixel_position[1] < before_frame.shape[1] \
and before_pixel_position[0] > 0 and before_pixel_position[1] > 0:
reprojected_image[row_idx][col_idx][c_idx] = before_frame[
before_pixel_position[0]
][
before_pixel_position[1]
][c_idx]
return reprojected_image
I can see that in Tensorflow tutorials people use vectorized_map or map_fn instead of loops, and tf.cond instead of the if operator. So is using these functions the only option for control flow, and if so, what are the reasons behind it?

Related

How to create a custom conditional activation function

I want to create custom activation function in TF2. The math is like this:
def sqrt_activation(x):
if x >= 0:
return tf.math.sqrt(x)
else:
return -tf.math.sqrt(-x)
The problem is that I can't compare x with 0 since x is a tensor. How to achieve this functionality?
You can skip the comparison by doing,
def sqrt_activation(x):
return tf.math.sign(x)*tf.math.sqrt(tf.abs(x))
YOu need to use tf backend functions and convert your code as follows:
import tensorflow as tf
#tf.function
def sqrt_activation(x):
zeros = tf.zeros_like(x)
pos = tf.where(x >= 0, tf.math.sqrt(x), zeros)
neg = tf.where(x < 0, -tf.math.sqrt(-x), zeros)
return pos + neg
note that this function check all tensor to meet on those conditions ergo returning the pos + neg line

Multi-GPU TFF simulation errors "Detected dataset reduce op in multi-GPU TFF simulation"

I ran my code for an emotion detection model using Tensorflow Federated simulation. My code work perfectly fine using CPUs only. However, I received this error when trying to run TFF with GPU.
ValueError: Detected dataset reduce op in multi-GPU TFF simulation: `use_experimental_simulation_loop=True` for `tff.learning`; or use `for ... in iter(dataset)` for your own dataset iteration.Reduce op will be functional after b/159180073.
What is this error about and how can I fix it? I tried to search many places but found no answer.
Here is the call stack if it help. It is very long so I pasted into this link: https://pastebin.com/b1R93gf1
EDIT:
Here is the code containing iterative_process
def startTraining(output_file):
iterative_process = tff.learning.build_federated_averaging_process(
model_fn,
client_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=0.01),
server_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=1.0),
use_experimental_simulation_loop=True
)
flstate = iterative_process.initialize()
evaluation = tff.learning.build_federated_evaluation(model_fn)
output_file.write(
'round,available_users,loss,sparse_categorical_accuracy,val_loss,val_sparse_categorical_accuracy,test_loss,test_sparse_categorical_accuracy\n')
curr_round_result = [0,0,100,0,100,0]
min_val_loss = 100
for round in range(1,ROUND_COUNT + 1):
available_users = fetch_available_users_and_increase_time(ROUND_DURATION_AVERAGE + random.randint(-ROUND_DURATION_VARIATION, ROUND_DURATION_VARIATION + 1))
if(len(available_users) == 0):
write_to_file(curr_round_result)
continue
train_data = make_federated_data(available_users, 'train')
flstate, metrics = iterative_process.next(flstate, train_data)
val_data = make_federated_data(available_users, 'val')
val_metrics = evaluation(flstate.model, val_data)
curr_round_result[0] = round
curr_round_result[1] = len(available_users)
curr_round_result[2] = metrics['train']['loss']
curr_round_result[3] = metrics['train']['sparse_categorical_accuracy']
curr_round_result[4] = val_metrics['loss']
curr_round_result[5] = val_metrics['sparse_categorical_accuracy']
write_to_file(curr_round_result)
Here is the code for make_federated_data
def make_federated_data(users, dataset_type):
offset = 0
if(dataset_type == 'val'):
offset = train_size
elif(dataset_type == 'test'):
offset = train_size + val_size
global LOADED_USER
for id in users:
if(id + offset not in LOADED_USER):
LOADED_USER[id + offset] = getDatasetFromFilePath(filepaths[id + offset])
return [
LOADED_USER[id + offset]
for id in users
]
TFF does support Multi-GPU, and as the error message says one of two things is happening:
The code is using tff.learning but using the default use_experimental_simulation_loop argument value of False. With multiple GPUs, this must be set to True when using APIs including tff.learning.build_federated_averaging_process. For example, calling with:
training_process = tff.learning.build_federated_averaging_process(
..., use_experimental_simulation_loop=True)
The code contains a custom tf.data.Dataset.reduce(...) call somewhere. This must be replaced with Python code that iterates over the dataset. For example:
result = dataset.reduce(initial_state=0, reduce_func=lambda s, x: s + x)
becomes
s = 0
for x in iter(dataset):
s += x
I realized that TFF has not yet supported multi-GPUs. Therefore, we need to limit number visible of GPUs to just 1, using:
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

How to read parameters of layers of .tflite model in python

I was trying to read tflite model and pull all the parameters of the layers out.
My steps:
I generated flatbuffers model representation by running (please build flatc before):
flatc -python tensorflow/tensorflow/lite/schema/schema.fbs
Result is tflite/ folder that contains layer description files (*.py) and some utilitarian files.
I successfully loaded model:
in case of import Error: set PYTHONPATH to point to the folder where tflite/ is
from tflite.Model import Model
def read_tflite_model(file):
buf = open(file, "rb").read()
buf = bytearray(buf)
model = Model.GetRootAsModel(buf, 0)
return model
I partly pulled model and node parameters out and stacked in iterating over nodes:
Model part:
def print_model_info(model):
version = model.Version()
print("Model version:", version)
description = model.Description().decode('utf-8')
print("Description:", description)
subgraph_len = model.SubgraphsLength()
print("Subgraph length:", subgraph_len)
Nodes part:
def print_nodes_info(model):
# what does this 0 mean? should it always be zero?
subgraph = model.Subgraphs(0)
operators_len = subgraph.OperatorsLength()
print('Operators length:', operators_len)
from collections import deque
nodes = deque(subgraph.InputsAsNumpy())
STEP_N = 0
MAX_STEPS = operators_len
print("Nodes info:")
while len(nodes) != 0 and STEP_N <= MAX_STEPS:
print("MAX_STEPS={} STEP_N={}".format(MAX_STEPS, STEP_N))
print("-" * 60)
node_id = nodes.pop()
print("Node id:", node_id)
tensor = subgraph.Tensors(node_id)
print("Node name:", tensor.Name().decode('utf-8'))
print("Node shape:", tensor.ShapeAsNumpy())
# which type is it? what does it mean?
type_of_tensor = tensor.Type()
print("Tensor type:", type_of_tensor)
quantization = tensor.Quantization()
min = quantization.MinAsNumpy()
max = quantization.MaxAsNumpy()
scale = quantization.ScaleAsNumpy()
zero_point = quantization.ZeroPointAsNumpy()
print("Quantization: ({}, {}), s={}, z={}".format(min, max, scale, zero_point))
# I do not understand it again. what is j, that I set to 0 here?
operator = subgraph.Operators(0)
for i in operator.OutputsAsNumpy():
nodes.appendleft(i)
STEP_N += 1
print("-"*60)
Please point me to documentation or some example of using this API.
My problems are:
I can not get documentation on this API
Iterating over Tensor objects seems not possible for me, as it doesn't have Inputs and Outputs methods. + subgraph.Operators(j=0) I do not understand what j means in here. Because of that my cycle goes through two nodes: input (once) and the next one over and over again.
Iterating over Operator objects is surely possible:
Here we iterate over them all but I can not get how to map Operator and Tensor.
def print_in_out_info_of_all_operators(model):
# what does this 0 mean? should it always be zero?
subgraph = model.Subgraphs(0)
for i in range(subgraph.OperatorsLength()):
operator = subgraph.Operators(i)
print('Outputs', operator.OutputsAsNumpy())
print('Inputs', operator.InputsAsNumpy())
I do not understand how to pull parameters out Operator object. BuiltinOptions method gives me Table object, that I do not know what to map at.
subgraph = model.Subgraphs(0)
What does this 0 mean? should it always be zero? obviously no, but what is it? Id of the subgraph? If so - I'm happy. If no, please try to explain it.

tensoflow sparse tensor efficient batching

I have a method (shown below) that gets a batch from a tensorflow SparseTensorValue. However, this method is rather slow (10-20 seconds for a batch of size 32), which is problematic because it's called thousands of times.
def get_batch(index, tensors, batch_size, nItems):
xs, ys = tensors
begin = (index * batch_size)
end = min((index+1)*batch_size, nItems)
y_b = ys[begin:end]
(inds, vals, dsize) = xs
nInds = [[ind[0] - begin, ind[1]] for ind in inds if begin <= ind[0] < end]
nInds = np.array(nInds)
nVals = vals[:nInds.shape[0]]
nDsize = (end - begin, dsize[1])
x_b = tf.SparseTensorValue(nInds, nVals, nDsize)
return (x_b, y_b)
Is there a way to make this method more efficient?
I'd recommend you to write your input pipeline using tf.data instead, then if anything you can offload this rebatching to another core and not block your main thread.

Tensorflow: Random selection of masks

I know that this stackoverflow thread already gives some nice examples about conditionals in tensorflow, but I'm still struggling how to solve my issue of randomly selecting among several different masks in tensorflow.
Right now I can only select between two mask tensors a and b:
rand_num = tf.random_uniform([], minval=0, maxval=2.0, dtype=tf.float32, seed=None)
def if_true():
return b
def if_false():
return a
mask_sel = tf.cond(tf.less(rand_num , tf.constant(1.0)),if_true,if_false)
(I still find it weird that one needs to define these two helper functions, but not using them weirdly throws an error.)
Now the question: Lets say I have 4 mask tensors (a,b,c,d) or more to randomly select, what would be the best way to do that in tensorflow?
In python that would be
rand_num = np.random.uniform(low=0,high=4.0)
if (rand_num < 1.0):
mask_sel = a
elif(rand_num < 2.0):
mask_sel = b
elif(rand_num < 3.0):
mask_sel = c
else
mask_sel = d
About the helper functions, they are useful because they allow tensorflow to know which operations will run under each condition, this way it can optimize by running only the selected branch and ignoring the other. Operations outside the helper functions but used by any of them will always be run before tf.cond runs.
The other options is to use tf.select; you won't need the helper functions here but it will always evaluate both sides before running tf.select which can be inefficient if you don't need to.
Now for the main problem 'selecting from more than 2 tesnors', you can use multiple options:
1- Recursively nesting tf.cond operations:
def select_from_list(selector, tensor_list):
length = len(tensor_list)
if length == 0:
raise ValueError('List is empty')
elif length == 1:
return tensor_list[0]
else:
half = length // 2
return tf.cond(tf.less(selector, float(half)), lambda: select_from_list(selector, tensor_list[:half]), lambda: select_from_list(selector - half, tensor_list[half:]))
2- Using tf.case:
def select_from_list(selector, tensor_list):
length = len(tensor_list)
if length == 0:
raise ValueError('List is empty')
elif length == 1:
return tensor_list[0]
else:
def fn(tensor):
return lambda: tensor
pred_fn_pairs = [(tf.less(selector, float(i+1)), fn(tensor)) for i, tensor in enumerate(tensor_list)]
return tf.case(pred_fn_pairs, default=lambda:tensor_list[-1])
You can test any of them using:
def test(selector, value_list, sess):
return select_from_list(float(selector), [tf.constant(value) for value in value_list]).eval(session = sess)
sess = tf.Session()
test(3.5, [4,2,6,7,5], sess)
This should return 7