OCaml "include Module" only includes functions exposed by the interface - module

I'm trying to test an OCaml module, called Game. However, the initialize function for Game, when used in the normal context of my project, only accepts a few parameters. This means certain tests would require me to init Game, then perform a specific combination of hundreds of operations just to get to a desired state, which is infeasible.
My idea was to create a new init function that allows the user to hard-code every component of a Game object. Since it'll only be used for testing, it seems like a bad idea to make this init function be part of the typical mli interface, so I thought using the keyword include in my testGame.ml file would help.
In my testGame.ml, both generate_player_ids and the Game.t type are "unbound," even though I define them in test.ml. This must be because they aren't exposed in game.mli, but I thought that using include would essentially be like copying and pasting the entire module, including the parts of the .ml file that aren't exposed. Is there a way to get testGame.ml to recognize these? Otherwise, what is the idiomatic way to have functions that recognize the hidden parts of a module for the purposes of testing?
testGame.ml:
include Game
let init_game_test
num_players
board
turn
starting_turn
setup_rounds_left
scoring_points
num_rounds =
let player_ids = generate_player_ids num_players in
{
players = players_of_player_ids player_ids;
player_order = player_ids;
board;
turn;
starting_turn;
setup_rounds_left;
scoring_points;
num_rounds;
}
game.ml:
type t = {
players : (PlayerId.t * Player.t) list;
player_order : PlayerId.t list;
board : Board.t;
turn : PlayerId.t;
starting_turn : PlayerId.t;
setup_rounds_left : int;
scoring_points : (Cell.soil * int list) list;
num_rounds : int;
}
let generate_player_ids num_players =
match num_players with
| 2 -> [ 1; 2 ]
| 3 -> [ 1; 2; 3 ]
| 4 -> [ 1; 2; 3; 4 ]
| _ -> failwith "Must be 2-4 players"

You're quite correct in assuming it's because they aren't exposed. include works on OCaml's module system, rather than a straight source inclusion basis as something like C does.
If you leave out the .mli interface file everything is by default exposed.

Related

Terraform module as "custom function"

It is possible to use some i.e. local module to return let' say same calculated output. But how can you pass some parameters? So each time you will ask for the output value you will get different value according to the parameter(ie different prefix)
Is it possible to pass resource to module and enhance it with tags?
I can imagine that both cases are more likely to be case for providers, but for some simple case it should work maybe. The best would be if they implemented some custom function that you will be able to call at will.
It is possible in principle to write a Terraform module that only contains "named values", which is the broad term for the three module features Input Variables (analogous to function arguments), Local Values (analogous to local declarations inside your function), and Output Values (analogous to return values).
Such a module would not contain any resource or data blocks at all and would therefore be a "computation-only" module, which therefore has all of the same capabilities as a function in a functional programming language.
variable "a" {
type = number
}
variable "b" {
type = number
}
locals {
sum = var.a + var.b
}
output "sum" {
value = local.sum
}
The above example is contrived just to show the principle. A "function" this simple doesn't really need the local value local.sum, because its expression could just be written inline in the value of output "sum", but I wanted to show examples of all three of the relevant constructs here.
You would "call the function" by declaring a module call referring to the directory containing the file with the above source code in it:
module "example" {
source = "./modules/sum"
a = 1
b = 2
}
output "result" {
value = module.example.sum
}
I included the output "result" block here to show how you can refer to the result of the "function" elsewhere in your module, as module.example.sum.
Of course, this syntax is much more "chunky" than a typical function call, so in practice Terraform module authors will use this approach only when the factored out logic is significant enough to justify it. Verbosity aside though, you can include as many module blocks referring to that same module as you like if you need to call the "function" with different sets of arguments. Each call to the module can take a different set of input variable values and therefore produce a different result.

F# and ILNumerics

I have just downloaded the last version of ILNumerics, to be used in my F# project. Is it possible to leverage on this library in F#? I have tried simple computations and it seems very cumbersome (in F#).
I would like to set up a constrained (or even unconstrained) optimization problem. The usual Rosenbrock function would do and then I will use my own function. I am having hard times in having even an Array being defined. The only kind of array I could define was a RetArray, for example with this code
let vector = ILMath.vector<float>(1.0, 2.0)
The compiler signals that vector is a RetArray; I think this is due to the fact that it is returning from a function (i.e.: ILMath.vector). If I define another similar vector, I can -e.g.- sum vectors, simply writing, for example
let a = ILMath.vector<float>(1.0, 2.0)
let b = ILMath.vector<float>(3.2,2.2)
let c = a + b
and I get
RetArray<float> = seq [4.2; 4.2]
but if I try to retrieve the value of c, again, writing, for example in FSI,
c;;
I get
Error: Object reference not set to an instance of an object.
What is the suggested way of using ILNumerics in F#? Is it possible to use the library natively in F# or I am forced to call my F# code from a C# library to use the whole ILNumerics library? Other than with the problem cited, I have problems in understanding the very basic logic of ILNumerics, when ported in F#.
For example, what would be the F# equivalent of the C# using scope as in the example code, as in:
using (ILScope.Enter(inData)) { ...
}
Just to elaborate a bit on brianberns' answer, there are a couple of things you could do to make it easier for yourself.
I would personally not go the route of defining a custom operator - especially one that overrides an existing one. Instead, perhaps you should consider using a computation expression to work with the ILMath types. This will allow you to hide a lot of the uglyness, that comes when working with libraries making use of non-F# standards (e.g. implicit type conversions).
I don't have access to ILMath, so I have just implemented these dummy alternatives, in order to get my code to compile. I suspect you should be able to just not copy that in, and the rest of the code will work as intended
module ILMath =
type RetArray<'t> = { Values: 't seq }
and Array<'t> = { OtherValues: 't seq } with
static member op_Implicit(x: RetArray<_>) = { OtherValues = x.Values }
static member inline (+) (x1, x2) = { Values = (x1.OtherValues, x2.OtherValues) ||> Seq.map2 (+) }
type ILMath =
static member vector<'t>([<ParamArray>] vs : 't []) = { ILMath.Values = vs }
If you have never seen or implemented a computation expression before, you should check the documentation I referenced. Basically, it adds some nice, syntactic sugar on top of some uglyness, in a way that you decide. My sample implementation adds just the let! (desugars to Bind) and return (desugars to Return, duh) key words.
type ILMathBuilder() =
member __.Bind(x: ILMath.RetArray<'t>, f) =
f(ILMath.Array<'t>.op_Implicit(x))
member __.Return(x: ILMath.RetArray<'t>) =
ILMath.Array<'t>.op_Implicit(x)
let ilmath = ILMathBuilder()
This should be defined and instantiated (the ilmath variable) at the top level. This allows you to write
let c = ilmath {
let! a = vector(1.0, 2.0)
let! b = vector(3.2, 2.2)
return a + b
}
Of course, this implementation adds only support for very few things, and requires, for instance, that a value of type RetArray<'t> is always returned. Extending the ILMathBuilder type according to the documentation is the way to go from here.
The reason that the second access of c fails is that ILNumerics is doing some very unusual memory management, which automatically releases the vector's memory when you might not expect it. In C#, this is managed via implicit conversion from vector to Array:
// C#
var A = vector<int>(1, 2, 3); // bad!
Array<int> A = vector<int>(1, 2, 3); // good
F# doesn't have implicit type conversions, but you can invoke the op_Implicit member manually, like this:
open ILNumerics
open type ILMath // open static class - new feature in F# 5
let inline (!) (x : RetArray<'t>) =
Array<'t>.op_Implicit(x)
[<EntryPoint>]
let main argv =
let a = !vector<float>(1.0, 2.0)
let b = !vector<float>(3.2,2.2)
let c = !(a + b)
printfn "%A" c
printfn "%A" c
0
Note that I've created an inline helper function called ! to make this easier. Every time you create an ILNumerics vector in F#, you must call this function to convert it to an array. (It's ugly, I know, but I don't see an easier alternative.)
To answer your last question, the equivalent F# code is:
use _scope = Scope.Enter(inData)
...

Parametrized types in Raku, how to use run time values as parameters

I'd like to create some parametrized types for Raku; basically, I'd like to create some different classes whose main difference would be the range of values of one of its attributes; for instance, classes represent types of building, I'd like to have different classes for buildings with 3 or any other number of floors.
So this is the best I could think of:
subset Two-Tops of UInt where * <=2;
subset Three-Tops of UInt where * <=3;
role Zipi[ ::Capper ] {
has Capper $.floor;
}
class Capped-at-three does Zipi[Three-Tops] {}
my $capped = Capped-at-three.new( floor => 2 );
say $capped.raku;
This is clearly unpractical as soon as you need to take care of many different numbers of floors (not here in Granada, where they have at most 10, I think, but well... ). The problem here is basically you need to have the information for subsets at compile time, so unless you use macros (still experimental), there's no way you can use any kind of variable. So can you think of a practical way of defining this kind of curried roles for any value of the parameter?
Actually, unlike I said in my previous you can use conditions in where clauses without problem, you just need to encase them in braces:
role Zipi[$condition] {
has $.floor is rw where {$_ ~~ $condition}
method foo($x) { $!floor = $x }
}
class A does Zipi[2 < * < 5] {
method bar($x) { $.floor = $x }
}
#my $a = A.new( floor => 10); # error
my $a = A.new( floor => 4); # OK
#$a.foo(10); # error
$a.foo(3); # OK
#$a.bar(0); # error
$a.bar(4); # OK
#$a.floor = 9; # error
$a.floor = 3; # OK
That should cover all of the assignment types
I have very limited MOP chops, and the following seems ugly, but it works, and might be a step in the right direction.
What I've done:
Dynamically constructed an array of 10,000 subsets via the MOP.
Time shifted their construction to compile time via BEGIN.
Used an appropriate element from the array to parameterize the role.
my #max-floors-checkers;
BEGIN {
#max-floors-checkers = do for ^10_000 -> \floors {
Metamodel::SubsetHOW.new_type:
refinee => UInt,
refinement => { $^floors <= floors }
}
}
role BuildingCategory[ ::MaxFloorsCheck ] { has MaxFloorsCheck $.floors }
class Capped-at-three does BuildingCategory[ #max-floors-checkers[3] ] {}
my $capped3 = Capped-at-three.new( floors => 2 );
say $capped3.raku; # Capped-at-three.new(floors => 2
my $capped4 = Capped-at-three.new( floors => 4 ); # Type check failed
I tried using anonymous where clauses, but similarly to no avail, but I tracked down the issue: the where clause is apparently being ignored by the BUILD method . I'm not sure if it's because it has direct access (via $!floor) which bypasses the where clause, or if something else weird is going on (probably the latter, I general got Nil if I tried to use the paramaterized value in a where clause).
Nonetheless, this should work nicely, including giving a helpful error message:
role Zipi[$condition] {
has $.floor;
submethod BUILD(:$floor, |c) {
die "Invalid floor number."
unless $floor ~~ $condition;
$!floor = $floor;
}
}
You can see how it'd be easy to modify if you can assume floors are always 0 .. x, or x .. y and could provide an even more helpful error message.
A nanswer covering the case a reader knows Java but not Raku.
Collection<String> coll = new LinkedList<String>();
parametrized types for Raku
The linked Java example is:
The instantiation of a generic type with actual type arguments is called a parameterized type. Example (of a parameterized type):
Collection<String> coll = new LinkedList<String>();
A reasonable Raku analog is:
my Positional[Str] \coll = Array[Str].new;
The Positional type is a parameterizable role. A role specifies an interface and/or partial implementation of a type. I believe Raku's Positional is sufficiently analogous to Java's Collection that it serves for the purposes of this nanswer.
The Array type is a parameterizable class. It specifies a data structure that adheres to the Positional role. It isn't a linked list but it will suffice for the purposes of this nanswer.

Signature can't be resolved when it's aliased to a constant

As a follow up to this question about using different APIs in a single program, Liz Mattijsen suggested to use constants. Now here's a different use case: let's try to create a multi that differentiates by API version, like this:
class WithApi:ver<0.0.1>:auth<github:JJ>:api<1> {}
my constant two = my class WithApi:ver<0.0.1>:auth<github:JJ>:api<2> {}
multi sub get-api( WithApi $foo where .^api() == 1 ) {
return "That's version 1";
}
multi sub get-api( WithApi $foo where .^api() == 2 ) {
return "That's version deuce";
}
say get-api(WithApi.new);
say two.new.^api;
say get-api(two.new);
We use a constant for the second version, since both can't be together in a single symbol space. But this yields this error:
That's version 1
2
Cannot resolve caller get-api(WithApi.new); none of these signatures match:
(WithApi $foo where { ... })
(WithApi $foo where { ... })
in block <unit> at ./version-signature.p6 line 18
So say two.new.^api; returns the correct api version, the caller is get-api(WithApi.new), so $foo has the correct type and the correct API version, yet the multi is not called? Is there something I'm missing here?
TL;DR JJ's answer is a run-time where clause that calls a pair of methods on the argument of concern. Everyone else's answers do the same job, but using compile-time constructs that provide better checking and much better performance. This answer blends my take with Liz's and Brad's.
Key strengths and weaknesses of JJ's answer
In JJ's answer, all the logic is self-contained within a where clause. This is its sole strength relative to the solution in everyone else's answers; it adds no LoC at all.
JJ's solution comes with two significant weaknesses:
Checking and dispatch overhead for a where clause on a parameter is incurred at run-time1. This is costly, even if the predicate isn't. In JJ's solution the predicates are costly ones, making matters even worse. And to cap it all off, the overhead in the worse case when using multiple dispatch is the sum of all the where clauses used in all the multis.
In the code where .^api() == 1 && .^name eq "WithApi", 42 of the 43 characters are duplicated for each multi variant. In contrast a non-where clause type constraint is much shorter and would not bury the difference. Of course, JJ could declare subsets to have a similar effect, but then that would eliminate the sole strength of their solution without fixing its most significant weakness.
Attaching compile-time metadata; using it in multiple dispatch
Before getting to JJ's problem in particular, here are a couple variations on the general technique:
role Fruit {} # Declare metadata `Fruit`
my $vegetable-A = 'cabbage';
my $vegetable-B = 'tomato' does Fruit; # Attach metadata to a value
multi pick (Fruit $produce) { $produce } # Dispatch based on metadata
say pick $vegetable-B; # tomato
Same again, but parameterized:
enum Field < Math English > ;
role Teacher[Field] {} # Declare parameterizable metadata `Teacher`
my $Ms-England = 'Ms England';
my $Mr-Matthews = 'Mr Matthews';
$Ms-England does Teacher[Math];
$Mr-Matthews does Teacher[English];
multi field (Teacher[Math]) { Math }
multi field (Teacher[English]) { English }
say field $Mr-Matthews; # English
I used a role to serve as the metadata, but that's incidental. The point was to have metadata that can be attached at compile-time, and which has a type name so dispatch resolution candidates can be established at compile-time.
A compile-time metadata version of JJ's run-time answer
The solution is to declare metadata and attach it to JJ's classes as appropriate.
A variation on Brad's solution:
class WithApi1 {}
class WithApi2 {}
constant one = anon class WithApi:ver<0.0.1>:auth<github:JJ>:api<1> is WithApi1 {}
constant two = anon class WithApi:ver<0.0.1>:auth<github:JJ>:api<2> is WithApi2 {}
constant three = anon class WithApi:ver<0.0.2>:api<1> is WithApi1 {}
multi sub get-api( WithApi1 $foo ) { "That's api 1" }
multi sub get-api( WithApi2 $foo ) { "That's api deuce" }
say get-api(one.new); # That's api 1
say get-api(two.new); # That's api deuce
say get-api(three.new); # That's api 1
An alternative is to write a single parameterizable metadata item:
role Api[Version $] {}
constant one = anon class WithApi:ver<0.0.1>:auth<github:JJ>:api<1> does Api[v1] {}
constant two = anon class WithApi:ver<0.0.1>:auth<github:JJ>:api<2> does Api[v2] {}
constant three = anon class WithApi:ver<0.0.2>:api<v1> does Api[v1] {}
multi sub get-api( Api[v1] $foo ) { "That's api 1" }
multi sub get-api( Api[v2] $foo ) { "That's api deuce" }
say get-api(one.new); # That's api 1
say get-api(two.new); # That's api deuce
say get-api(three.new); # That's api 1
Matching ranges of versions
In a comment below JJ wrote:
If you use where clauses you can have multis that dispatch on versions up to a number (so no need to create one for every version)
The role solution covered in this answer can also dispatch on version ranges by adding another role:
role Api[Range $ where { .min & .max ~~ Version }] {}
...
multi sub get-api( Api[v1..v3] $foo ) { "That's api 1 thru 3" }
#multi sub get-api( Api[v2] $foo ) { "That's api deuce" }
This displays That's api 1 thru 3 for all three calls. If the second multi is uncommented it takes precedence for v2 calls.
Note that the get-api routine dispatch is still checked and candidate resolved at compile-time despite the fact the role signature includes a where clause. This is because the run-time for running the role's where clause is during compilation of the get-api routine; when the get-api routine is called the role's where clause is no longer relevant.
Footnotes
1 In Multiple Constraints, Larry wrote:
For 6.0.0 ... any structure type information inferable from the where clause will be ignored [at compile-time]
But for the future he conjectured:
my enum Day ['Sun','Mon','Tue','Wed','Thu','Fri','Sat'];
Int $n where 1 <= * <= 5 # Int plus dynamic where
Day $n where 1 <= * <= 5 # 1..5
The first where is considered dynamic not because of the nature of the comparisons but because Int is not finitely enumerable. [The second constraint] ... can calculate the set membership at compile time because it is based on the Day enum, and hence [the constraint, including the where clause] is considered static despite the use of a where.
The solution is really simple: also alias the "1" version:
my constant one = my class WithApi:ver<0.0.1>:auth<github:JJ>:api<1> {}
my constant two = my class WithApi:ver<0.0.1>:auth<github:JJ>:api<2> {}
multi sub get-api(one $foo) {
return "That's version 1";
}
multi sub get-api(two $foo) {
return "That's version deuce";
}
say one.new.^api; # 1
say get-api(one.new); # That's version 1
say two.new.^api; # 2
say get-api(two.new); # That's version deuce
And that also allows you to get rid of the where clause in the signatures.
Mind you, you won't be able to distinguish them by their given name:
say one.^name; # WithApi
say two.^name; # WithApi
If you want to be able to do that, you will have to set the name of the meta-object associated with the class:
my constant one = my class WithApi:ver<0.0.1>:auth<github:JJ>:api<1> {}
BEGIN one.^set_name("one");
my constant two = my class WithApi:ver<0.0.1>:auth<github:JJ>:api<2> {}
BEGIN two.^set_name("two");
Then you will be able to distinguish by name:
say one.^name; # one
say two.^name; # two
Only one thing can be in a given namespace.
I assume the whole reason you are putting the second declaration into a constant and declaring it with my is that it was giving you a redeclaration error.
The thing is, that it should still be giving you a redeclaration error.
Your code shouldn't even compile.
You should have to declare the second one with anon instead.
class WithApi:ver<0.0.1>:auth<github:JJ>:api<1> {}
constant two = anon class WithApi:ver<0.0.1>:auth<github:JJ>:api<2> {}
It would then be obvious why what you are trying to do doesn't work.
The second declaration is never installed into the namespace in the first place.
So when you use it in the second multi sub it is declaring that its argument is the same type as the first class.
(Even when you are using my in your code it isn't managing to install it into the namespace.)
You are assuming that the namespace is a flat namespace.
It isn't.
You can have a class that has one name, but is only ever accessible under another.
our constant Bar = anon class Foo {}
sub example ( Bar $foo ) {
say $foo.^name; # Foo
}
example( Bar );
Raku installs the class into the namespace for you as a convenience.
Otherwise there would be a lot of code that looked like:
our constant Baz = class Baz {}
You are trying to use the namespace while at the same time trying to subvert the namespace.
I don't know why you expect that to work.
A quick way to get your exact code to work as you wrote it, is to declare that the second class is a subclass of the first.
class WithApi:ver<0.0.1>:auth<github:JJ>:api<1> {}
constant two = anon class WithApi:ver<0.0.1>:auth<github:JJ>:api<2> is WithApi {}
# ^________^
Then when the second multi checks that its argument is of the first type, it still matches when you give it the second.
This isn't great.
There isn't really a built-in way to do exactly what you want.
You could try to create a new meta type that can create a new type that will act like both classes.
I personally would just alias them both to independent names.
constant one = anon class WithApi:ver<0.0.1>:auth<github:JJ>:api<1> {}
constant two = anon class WithApi:ver<0.0.1>:auth<github:JJ>:api<2> {}
If you are loading them from modules:
constant one = BEGIN {
# this is contained within this block
use WithApi:ver<0.0.1>:auth<github:JJ>:api<1>;
WithApi # return the class from the block
}
constant two = BEGIN {
use WithApi:ver<0.0.1>:auth<github:JJ>:api<2>;
WithApi
}
Elizabeth Mattijsen answer above game me a hint. Signatures match symbol, not symbol name. However, when you alias (using a constant) to a new name, you still keep the name. Let's use this to have an uniform multi call where the only thing that changes is the api version:
class WithApi:ver<0.0.1>:auth<github:JJ>:api<1> {}
my constant two = my class WithApi:ver<0.0.1>:auth<github:JJ>:api<2> {}
my constant two = my class WithApi:ver<0.0.1>:auth<github:JJ>:api<2> {}
my constant three = my class WithApi:ver<0.0.2>:api<1> {}
multi sub get-api( $foo where .^api() == 1 && .^name eq "WithApi" ) {
return "That's version 1";
}
multi sub get-api( $foo where .^api() == 2 && .^name eq "WithApi") {
return "That's version deuce";
}
say get-api(WithApi.new); # That's version 1
say get-api(two.new); # That's version deuce
say get-api(three.new); # # That's version 1
Again following Elizabeth's answer in the previous question, constants are used for the new versions to avoid namespace clashes, but the multis will be selected solely based in api version in a relatively type-safe way, without needing to use the aliased symbols in the signature. Even if you invent a new constant to alias WithApi with any metadata, the multi will still be selected based on api version (which is what I was looking for).

Accessing Variables by Reference

I am trying to figure out the basic way to reference a simple type in Swift.
In C, it's no issue:
int a = 42;
int* refA = &a;
*refA = 43;
// At this point, a is 43
In Swift, it seems that I can't do this.
var a:Int = 42
println ( a )
// var aRef:Int = &a // Nope.
// var aRef:Int& = &a // Nah.
// inout var:Int aRef = &a // Nyet
// var inout:Int aRef = &a // Non
// var aRef:Int* = &a // What are you, stupid, or stubborn?
//
// aRef = 43 // If any of the above worked, I could do this.
println ( a ) // How can I get this to print "43"?
I can't find anything in the docs that say I can do this. I know about inout as a function parameter modifier, but I'd like to be able to do this outside of functions.
There's some basic reasons that I'd like to do this. Declaring classes of everything introduces some overhead (mostly planning and writing, as opposed to execution time).
Values cannot be passed by reference in Swift (except for inout parameters), this is one of the things that makes it "Objective-C without the C". You might have to rethink your approach with the possibilities and restrictions of the language in mind.
In general, trying to use Language A as if it were Language B on a feature-for-feature basis is a good way to get yourself into round-peg-square-hole issues. Instead, step back a bit -- what problems do you solve using Feature X in Language B? Language A might have different (and even perhaps more elegant) ways to address those problems.
Not being able to create a pointer (or C++-style reference) to any arbitrary value is probably part of Swift's type/memory safety. Adding that level of indirection makes it harder for a compiler to make reasoned deductions about code (in particular, the ownership of memory addresses), opening all kinds of possibilities for undefined behavior (read: bugs, security holes).
Swift is designed to eat bugs. By using carefully-designed semantics for values vs. references, augmented with inout for specific uses, Swift can more carefully control memory ownership and help you write more reliable code. Without any loss in expressivity, really -- that expressivity just takes different forms. :)
If you really want to put a round peg into a square hole, you can cut down your "planning and writing" overhead with a single generic implementation that wraps any value in a reference. Something like this, maybe:
class Handle<T> {
var val: T
init(_ val: T) {
self.val = val
}
}
Note that with this, you still need to plan ahead -- since you can't create pointers/references to arbitrary things that already exist, you'll have to create something through a Handle when you want to be able to treat it like a reference type later.
And with some custom operator definitions, you might even be able to make it look a little bit like C/C++. (Maybe post on Terrible Swift Ideas if you do.)
For the record, your desired behavior is not all the difficult to achieve:
1> func inc (inout x: Int) { x = x + 1 }
2> var val:Int = 10
val: Int = 10
3> inc(&val)
4> val
$R0: Int = 11
What you loose is the 'performance' of a builtin binary operation; but what you gain by using functional abstraction well out weighs any non-builtin issue.
func incrementor (by: Int) (inout _ x: Int) { x = x + by } #Bug in Swift prevents this '_'
var incBy10 = incrementor (10)
incBy10(&val)