Selecting the MFFC of a node - yosys

I need to determine the maximum fanout-free cone (MFFC) of nodes/cells in a circuit. As far as I am aware, there is no direct command in Yosys to do that. I thought it might be possible with the select command, but I have not figured out a correct sequence so far. My approach was to first select the fanin cone of a node/cell, and then try to remove those nodes with fanout that leaves the cone.
Is the select command of good use here, or is it easier to write a new pass to determine the MFFC?
Thanks and best regards
lwitsche

Related

How to constrain dtw from dtw-python library?

Here is what I want to do:
keep a reference curve unchanged (only shift and stretch a query curve)
constrain how many elements are duplicated
keep both start and end open
I tried:
dtw(ref_curve,query_curve,step_pattern=asymmetric,open_end=True,open_begin=True)
but I cannot constrain how the query curve is stretched
dtw(ref_curve,query_curve,step_pattern=mvmStepPattern(10))
it didn’t do anything to the curves!
dtw(ref_curve,query_curve,step_pattern=rabinerJuangStepPattern(4, "c"),open_end=True, open_begin=True)
I liked this one the most but in some cases it shifts the query curve more than needed...
I read the paper (https://www.jstatsoft.org/article/view/v031i07) and the API but still don't quite understand how to achieve what I want. Any other options to constrain number of elements that are duplicated? I would appreciate your help!
to clarify: we are talking about functions provided by the DTW suite packages at dynamictimewarping.github.io. The question is in fact language-independent (and may be more suited to the Cross-validated Stack Exchange).
The pattern rabinerJuangStepPattern(4, "c") you have found does in fact satisfy your requirements:
it's asymmetric, and each step advances the reference by exactly one step
it's slope-limited between 1/2 and 2
it's type "c", so can be normalized in a way that allows open-begin and open-end
If you haven't already, check out dtw.rabinerJuangStepPattern(4, "c").plot().
It goes without saying that in all cases you are getting is the optimal alignment, i.e. the one with the least accumulated distance among all allowed paths.
As an alternative, you may consider the simpler asymmetric recursion -- as your first attempt above -- constrained with a global warping window: see dtw.window and the window_type argument. This provides constraints of a different shape (and flexible size), which might suit your specific case.
PS: edited to add that the asymmetricP2 recursion is also similar to RJ-4c, but with a more constrained slope.

How to compare and find desired result from a table

I am using the Blueprism Surface Automation training applicationApp1App2, and i want to find account using last name as search filter. Here i got multiple matches and want to select one result based on the first name Result_image.
How to do that? Any suggestions.
Meanwhile i was trying this,
Tried using accessibility mode where i select the first name once and then just change the y coordinate of the region and read the value, but i can't find any option to do that. There is one option Movable, but not sure how to use that.
Any other approach is welcome.
the "Blue Prism training" application is a playground for using advanced techniques, and that exact window is done to learn basics of Surface Automation. It's specifically done that way, that it's really hard to work without it, so I really don't think you can go far without using surface..
The exercise that you want to do is pretty hard, so I'd advise on doing simpler one first - reading the first name in the table.
The by-the-book solution to that is as follows:
1) Identify window using region mode
2) Specify a region in the window that contains the "name" field
3) Use the BluePrism OCR to read what's written there and check if that's the one that you're searching for.
If you'll have that exercise done, then you can think about reading the next names.
The simplest way to do that (and it's still not simple!) is to have dynamic region, that will ask for "Start Y", "End Y", "Start X", "End X" parameters. That way, you can specify the parameters for that object and move it as you with. Then using a loop and basic math you can move that region to the next field in table.
Good luck!

Alphabetical index with millions of rows in redis

For my application, I need an alphabetical index on a set with millions of rows.
When I use a sorted set, and give all members the same score, the result looks perfect.
Performance is also great, with a test set of 2 million rows, the last third does not perform noticably less than the first third of the set.
However, I need to query those results. For example, get the first (max) 100 items that start with "goo". I played around with zscan and sort, but it does not give me a working and performant result.
Since redis is very fast when inserting a new member to the sorted set, it must be technically possible to immediately (well, very quickly) go to the right memory location. I suppose redis uses some kind of quicksort mechanism to accomplish this.
But.. I don't seem to get the result when I just want to query the data, and not write to it.
We use replicated slaves for read actions, and we prefer the (default) read-only config switch. So creating a dummy key and deleting it afterward (however unelegant) is not really an option.
I'm stuck a bit, and I'm thinking about writing a ZLEX command in redis-server itself. Which I could use like this:
HELP "ZLEX" -> (ZLEX set score startswith)
-- Query the lexicographical index of a sorted set, supplying a 'startswith' string.
127.0.0.1:12345> ZLEX myset 0 goo LIMIT 0 100
1) goo
2) goof
3) goons
4) goozer
What are your thoughts? Am I missing something in the standard redis commands?
We're using Redis 2.8.4 x64 on Debian.
Kind regards, TW
Edits:
Note:
Related issue: indexing-using-redis-sorted-sets -> At least the name I gave to ZLEX seems to conform with Antirez' (Salvatore's) standards. As of 24-1-2014, I'm working on implementing ZLEX. It seems to be the easiest and most straight-forward solution for this use case, and Antirez could merge it into the main branch for everyone's benefit.
I've implemented ZLEX.
Here are the full specs.
You can grab the new functionality from here: github tw-bert
I also posted a pull request to Antirez here.
Kind regards, TW
Have you had a look at this ?
It can be useful depending on the length of the field by which you sort, this method requires b*(a^2) keys, where a is the length of the field , and b is amount of rows for this field.

Efficient way to compute accumulating value in sqlite3

I have an sqlite3 table that tells when I gain/lose points in a game. Sample/query result:
SELECT time,p2 FROM events WHERE p1='barrycarter' AND action='points'
ORDER BY time;
1280622305|-22
1280625580|-9
1280627919|20
1280688964|21
1280694395|-11
1280698006|28
1280705461|-14
1280706788|-13
[etc]
I now want my running point total. Given that I start w/ 1000 points,
here's one way to do it.
SELECT DISTINCT(time), (SELECT
1000+SUM(p2) FROM events e WHERE p1='barrycarter' AND action='points'
AND e.time <= e2.time) AS points FROM events e2 WHERE p1='barrycarter'
AND action='points' ORDER BY time
but this is highly inefficient. What's a better way to write this?
MySQL has #variables so you can do things like:
SELECT time, #tot := #tot+points ...
but I'm using sqlite3 and the above isn't ANSI standard SQL anyway.
More info on the db if anyone needs it: http://ccgames.db.94y.info/
EDIT: Thanks for the answers! My dilemma: I let anyone run any
single SELECT query on "http://ccgames.db.94y.info/". I want to give
them useful access to my data, but not to the point of allowing
scripting or allowing multiple queries with state. So I need a single
SQL query that can do accumulation. See also:
Existing solution to share database data usefully but safely?
SQLite is meant to be a small embedded database. Given that definition, it is not unreasonable to find many limitations with it. The task at hand is not solvable using SQLite alone, or it will be terribly slow as you have found. The query you have written is a triangular cross join that will not scale, or rather, will scale badly.
The most efficient way to tackle the problem is through the program that is making use of SQLite, e.g. if you were using Web SQL in HTML5, you can easily accumulate in JavaScript.
There is a discussion about this problem in the sqlite mailing list.
Your 2 options are:
Iterate through all the rows with a cursor and calculate the running sum on the client.
Store sums instead of, or as well as storing points. (if you only store sums you can get the points by doing sum(n) - sum(n-1) which is fast).

optimizing a function to find global and local peaks with R

Y
I have 6 parameters for which I know maxi and mini values. I have a complex function that includes the 6 parameters and return a 7th value (say Y). I say complex because Y is not directly related to the 6 parameters; there are many embeded functions in between.
I would like to find the combination of the 6 parameters which returns the highest Y value. I first tried to calculate Y for every combination by constructing an hypercube but I have not enough memory in my computer. So I am looking for kinds of markov chains which progress in the delimited parameter space, and are able to overpass local peaks.
when I give one combination of the 6 parameters, I would like to know the highest local Y value. I tried to write a code with an iterative chain like a markov's one, but I am not sure how to process when the chain reach an edge of the parameter space. Obviously, some algorythms should already exist for this.
Question: Does anybody know what are the best functions in R to do these two things? I read that optim() could be appropriate to find the global peak but I am not sure that it can deal with complex functions (I prefer asking before engaging in a long (for me) process of code writing). And fot he local peaks? optim() should not be able to do this
In advance, thank you for any lead
Julien from France
Take a look at the Optimization and Mathematical Programming Task View on CRAN. I've personally found the differential evolution algorithm to be very fast and robust. It's implemented in the DEoptim package. The rgenoud package is another good candidate.
I like to use the Metropolis-Hastings algorithm. Since you are limiting each parameter to a range, the simple thing to do is let your proposal distribution simply be uniform over the range. That way, you won't run off the edges. It won't be fast, but if you let it run long enough, it will do a good job of sampling your space. The samples will congregate at each peak, and will spread out around them in a way that reflects the local curvature.