I have a heatmap with several rows and columns.
Formerly, I was plotting a circle for each (row_index,column_index) and appending this circle to a circle_list. I was adding circle_list as a collection to the axes.
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.collections import PatchCollection
def heatmap_with_circles(data_array,row_labels,column_labels,ax=None, cmap=None, norm=None, cbar_kw={}, cbarlabel="", **kwargs):
circles=[]
for row_index, row in enumerate(row_labels):
for column_index, column in enumerate(column_labels):
circles.append(plt.Circle((row_index,column_index),radius=0.4))
col = PatchCollection(circles, array=data_array.flatten(), cmap=cmap, norm=norm)
ax.add_collection(col)
# We want to show all ticks...
ax.set_xticks(np.arange(data_array.shape[1]))
ax.set_yticks(np.arange(data_array.shape[0]))
fontsize=10
ax.set_xticklabels(column_labels, fontsize=fontsize)
ax.set_yticklabels(row_labels, fontsize=fontsize)
#X axis labels at top
ax.tick_params(top=True, bottom=False,labeltop=True, labelbottom=False,pad=5)
plt.setp(ax.get_xticklabels(), rotation=55, ha="left", rotation_mode="anchor")
# We want to show all ticks...
ax.set_xticks(np.arange(data_array.shape[1]+1)-.5, minor=True)
ax.set_yticks(np.arange(data_array.shape[0]+1)-.5, minor=True)
ax.grid(which="minor", color="black", linestyle='-', linewidth=3)
ax.tick_params(which="minor", bottom=False, left=False)
data_array=np.random.rand(3,4)
row_labels=['Row1', 'Row2', 'Row3']
column_labels=['Column1', 'Column2', 'Column3','Column4']
fig, ax = plt.subplots(figsize=(1.9*len(row_labels),1.2*len(column_labels)))
ax.set_aspect(1.0)
ax.set_facecolor('white')
heatmap_with_circles(data_array,row_labels,column_labels, ax=ax)
plt.tight_layout()
plt.show()
However, now I need to plot a pie chart instead of a circle.
And pie chart does not have (row_index,column_index) parameters.
Is there a way to plot pie chart in each cell of matplotlib heatmap?
Updating the for loop in heatmap_with_circles as follows:
for row_index, row in enumerate(row_labels,0):
for column_index, column in enumerate(column_labels,0):
wedges, _ = plt.pie([20, 10, 5])
radius = 0.45
[w.set_center((column_index,row_index)) for w in wedges]
[w.set_radius(radius) for w in wedges]
results in
You can access each wedge created by plt.pie individually and then use set_radius and set_position to rescale the different wedges.
wedges, _ = plt.pie([1,2,3])
x_position, y_position = 0, 0
radius = 0.2
[w.set_center((x_position,y_position)) for w in wedges]
[w.set_radius(radius) for w in wedges]
Edit:
On your code, in the for loop
for row_index, row in enumerate(row_labels):
for column_index, column in enumerate(column_labels):
wedges, _ = plt.pie([1,2,3])
[w.set_center((row_index,column_index)) for w in wedges]
[w.set_radius(0.4) for w in wedges]
Related
I plotting a Heatmap with the code bellow, it contains 6 columns and 40 rows so when I plot the heatmap its looks like a narrow column figure:
import numpy as np
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
data = pd.read_csv('X.csv')
x = data.drop(['P'],1)
y = data['P']
Performance_Indices = y.to_list()
Columns= ["AMSR1", "AMSR2", "AMSR3",
"SMAPL3", "SMAPL4", "GLDAS"]
def heatmap(data, row_labels, col_labels, ax=None,
cbar_kw={}, cbarlabel="", **kwargs):
if not ax:
ax = plt.gca()
im = ax.imshow(data, **kwargs)
cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw)
cbar.ax.set_ylabel(cbarlabel, rotation=90, va="bottom", fontsize=10,
fontweight="bold", labelpad=20)
ax.set_xticks(np.arange(data.shape[1]))
ax.set_yticks(np.arange(data.shape[0]))
ax.set_xticklabels(col_labels, fontsize=10, fontweight="bold")
ax.set_yticklabels(row_labels, fontsize=10, fontweight="bold")
ax.tick_params(top=False, bottom=True,
labeltop=False, labelbottom=True)
plt.setp(ax.get_xticklabels(), rotation=90, ha="right",
rotation_mode="anchor")
for edge, spine in ax.spines.items():
spine.set_visible(False)
ax.set_xticks(np.arange(data.shape[1]+1)-.5, minor=True)
ax.set_yticks(np.arange(data.shape[0]+1)-.5, minor=True)
return im, cbar
def annotate_heatmap(im, data=None, valfmt="{x:.2f}",
textcolors=["black", "white"],
threshold=None, **textkw):
if not isinstance(data, (list, np.ndarray)):
data = im.get_array()
if threshold is not None:
threshold = im.norm(threshold)
else:
threshold = im.norm(data.max())/2.
kw = dict(horizontalalignment="center",
verticalalignment="center")
kw.update(textkw)
if isinstance(valfmt, str):
valfmt = matplotlib.ticker.StrMethodFormatter(valfmt)
texts = []
for i in range(data.shape[0]):
for j in range(data.shape[1]):
kw.update(color=textcolors[int(im.norm(data[i, j]) > threshold)])
text = im.axes.text(j, i, valfmt(data[i, j], None), **kw)
texts.append(text)
return texts
fig, ax = plt.subplots()
im, cbar = heatmap(x, Performance_Indices, farmers, ax=ax,
cmap="jet", cbarlabel="Normalized Value")
ax.set_xlabel('Predictive models', fontsize=15, fontweight="bold", labelpad=10)
ax.set_ylabel('Performance Index', fontsize=15, fontweight="bold", labelpad=10)
ax.set_title("b)", fontweight="bold", pad=20, fontsize=15)
But the figure is look like bellow:
HOW CAN I ADJUST THE CELL SIZE SO THAT THE CELLS CAN BE BIGGER, DECIMAL NUMBER CAN BE APPEAR AND THE PLOT LOOK LIKE SOMETHING DECENT!!
Since I do not have your data and therefore can not run your code. I just wrote the following which should solve your problem:
import numpy as np
import matplotlib.pyplot as plt
img = np.random.randint(0,10,(100,100))
# here you can set the figure size
fig,ax = plt.subplots(figsize=(20,20))
# plot somehting - here an image
ax.imshow(img,origin='lower')
# here you can set the aspect ratio
ax.set_aspect(aspect=0.5)
plt.show()
I have the code below to plot circles add them to an ax.
I color the circles with respect to a colorbar.
However, to add the colorbar to my plot, I'm using sc=plot.scatter(...) and putting the colorbar using this dummy sc. Because plt.colorbar(sc,...) requires a mappable argument. How can I get rid of this dummy sc and still draw my colorbar?
import matplotlib
import numpy as np
import os
import matplotlib as mpl
from matplotlib.colors import Normalize
import matplotlib.cm as matplotlib_cm
from matplotlib import pyplot as plt
print(matplotlib.__version__)
row_list=['row1', 'row2', 'row3']
column_list=[2]
maxProcessiveGroupLength=2
index = column_list.index(maxProcessiveGroupLength)
plot1,panel1 = plt.subplots(figsize=(20+1.5*len(column_list), 10+1.5*len(row_list)))
plt.rc('axes', edgecolor='lightgray')
#make aspect ratio square
panel1.set_aspect(1.0)
panel1.text(0.1, 1.2, 'DEBUG', horizontalalignment='center', verticalalignment='top', fontsize=60, fontweight='bold', fontname='Arial',transform=panel1.transAxes)
if (len(column_list) > 1):
panel1.set_xlim([1, index + 1])
panel1.set_xticks(np.arange(0, index + 2, 1))
else:
panel1.set_xlim([0, len(column_list)])
panel1.set_xticks(np.arange(0, len(column_list)+1, 1))
if (len(row_list) > 1):
panel1.set_ylim([1, len(row_list)])
else:
panel1.set_ylim([0, len(row_list)])
panel1.set_yticks(np.arange(0, len(row_list) + 1, 1))
panel1.set_facecolor('white')
panel1.grid(color='black')
for edge, spine in panel1.spines.items():
spine.set_visible(True)
spine.set_color('black')
xlabels = None
if (index is not None):
xlabels = column_list[0:index + 1]
ylabels = row_list
cmap = matplotlib_cm.get_cmap('Blues') # Looks better
v_min = 2
v_max = 20
norm = Normalize(v_min, v_max)
bounds = np.arange(v_min, v_max+1, 2)
# Plot the circles with color
for row_index, row in enumerate(row_list):
for column_index, processive_group_length in enumerate(column_list):
radius=0.35
color=10+column_index*3+row_index*3
circle = plt.Circle((column_index + 0.5, row_index + 0.5), radius,color=cmap(norm(color)), fill=True)
panel1.add_patch(circle)
# Used for scatter plot
x = []
y = []
c = []
for row_index, processiveGroupLength in enumerate(row_list):
x.append(row_index)
y.append(row_index)
c.append(0.5)
# This code defines the ticks on the color bar
# plot the scatter plot
sc = plt.scatter(x, y, s=0, c=c, cmap=cmap, vmin=v_min, vmax=v_max, edgecolors='black')
# colorbar to the bottom
cb = plt.colorbar(sc ,orientation='horizontal') # this works because of the scatter
cb.ax.set_xlabel("colorbar label", fontsize=50, labelpad=25)
# common for horizontal colorbar and vertical colorbar
cbax = cb.ax
cbax.tick_params(labelsize=40)
text_x = cbax.xaxis.label
text_y = cbax.yaxis.label
font = mpl.font_manager.FontProperties(size=40)
text_x.set_font_properties(font)
text_y.set_font_properties(font)
# CODE GOES HERE TO CENTER X-AXIS LABELS...
panel1.set_xticklabels([])
mticks = panel1.get_xticks()
panel1.set_xticks((mticks[:-1] + mticks[1:]) / 2, minor=True)
panel1.tick_params(axis='x', which='minor', length=0, labelsize=50)
if xlabels is not None:
panel1.set_xticklabels(xlabels,minor=True)
panel1.xaxis.set_ticks_position('top')
plt.tick_params(
axis='x', # changes apply to the x-axis
which='major', # both major and minor ticks are affected
bottom=False, # ticks along the bottom edge are off
top=False) # labels along the bottom edge are off
# CODE GOES HERE TO CENTER Y-AXIS LABELS...
panel1.set_yticklabels([])
mticks = panel1.get_yticks()
panel1.set_yticks((mticks[:-1] + mticks[1:]) / 2, minor=True)
panel1.tick_params(axis='y', which='minor', length=0, labelsize=50)
panel1.set_yticklabels(ylabels, minor=True) # fontsize
plt.tick_params(
axis='y', # changes apply to the x-axis
which='major', # both major and minor ticks are affected
left=False) # labels along the bottom edge are off
plt.show()
From the documentation of colorbar:
Note that one can create a ScalarMappable "on-the-fly" to generate
colorbars not attached to a previously drawn artist
In your example, the following allows for creating the same colorbar without the scatter plot:
cb = plt.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap), orientation='horizontal')
I want to have multiple pie charts in a grid.
Each pie chart will have a different number of wedges, values, and labels.
The code below shows multiple labels in one pie chart.
Is there a way to label each wedge of pie-charts in this grid?
import matplotlib.pyplot as plt
import numpy as np
def heatmap_with_circles(data_array,row_labels,column_labels,ax=None, cmap=None, norm=None, cbar_kw={}, cbarlabel="", **kwargs):
for row_index, row in enumerate(row_labels,0):
for column_index, column in enumerate(column_labels,0):
print('row_index: %d column_index: %d' %(row_index,column_index))
if row_index==0 and column_index==0:
colors=['indianred','orange','gray']
values=[10,20,30]
else:
values=[45,20,38]
colors=['pink','violet','green']
wedges, text = plt.pie(values,labels=['0', '2', '3'],labeldistance = 0.25,colors=colors)
print('len(wedges):%d wedges: %s, text: %s' %(len(wedges), wedges, text))
radius = 0.45
[w.set_center((column_index,row_index)) for w in wedges]
[w.set_radius(radius) for w in wedges]
# We want to show all ticks...
ax.set_xticks(np.arange(data_array.shape[1]))
ax.set_yticks(np.arange(data_array.shape[0]))
fontsize=10
ax.set_xticklabels(column_labels, fontsize=fontsize)
ax.set_yticklabels(row_labels, fontsize=fontsize)
#X axis labels at top
ax.tick_params(top=True, bottom=False,labeltop=True, labelbottom=False,pad=5)
plt.setp(ax.get_xticklabels(), rotation=55, ha="left", rotation_mode="anchor")
# We want to show all ticks...
ax.set_xticks(np.arange(data_array.shape[1]+1)-.5, minor=True)
ax.set_yticks(np.arange(data_array.shape[0]+1)-.5, minor=True)
ax.grid(which="minor", color="black", linestyle='-', linewidth=2)
ax.tick_params(which="minor", bottom=False, left=False)
data_array=np.random.rand(3,4)
row_labels=['Row1', 'Row2', 'Row3']
column_labels=['Column1', 'Column2', 'Column3','Column4']
fig, ax = plt.subplots(figsize=(1.9*len(column_labels),1.2*len(row_labels)))
ax.set_aspect(1.0)
ax.set_facecolor('white')
heatmap_with_circles(data_array,row_labels,column_labels, ax=ax)
plt.tight_layout()
plt.show()
After updating heatmap_with_circles
def heatmap_with_circles(data_array,row_labels,column_labels,ax=None, cmap=None, norm=None, cbar_kw={}, cbarlabel="", **kwargs):
labels = ['x', 'y', 'z']
for row_index, row in enumerate(row_labels,0):
for column_index, column in enumerate(column_labels,0):
print('row_index: %d column_index: %d' %(row_index,column_index))
if row_index==0 and column_index==0:
colors=['indianred','orange','gray']
values=[10,20,30]
else:
values=[45,20,38]
colors=['pink','violet','green']
# wedges, texts = plt.pie(values,labels=['0', '2', '3'],labeldistance = 0.45,colors=colors)
wedges, texts = plt.pie(values,labeldistance = 0.25,colors=colors)
print('text:%s len(wedges):%d wedges: %s' %(texts, len(wedges), wedges))
radius = 0.45
[w.set_center((column_index,row_index)) for w in wedges]
[w.set_radius(radius) for w in wedges]
[text.set_position((text.get_position()[0]+column_index,text.get_position()[1]+row_index)) for text in texts]
[text.set_text(labels[text_index]) for text_index, text in enumerate(texts,0)]
I got the following image :)
You could loop through the texts of each pie, get its xy position, add column_index and row_index, and set that as new position.
Some small changes to the existing code:
ax.grid(which="minor", ..., clip_on=False) to make sure the thick lines are shown completely, also near the border
ax.set_xlim(xmin=-0.5) to set the limits
import matplotlib.pyplot as plt
import numpy as np
def heatmap_with_circles(data_array, row_labels, column_labels, ax=None):
ax = ax or plt.gca()
for row_index, row in enumerate(row_labels, 0):
for column_index, column in enumerate(column_labels, 0):
colors = np.random.choice(['indianred', 'orange', 'gray', 'pink', 'violet', 'green'], 3, replace=False)
values = np.random.randint(10, 41, 3)
wedges, text = plt.pie(values, labels=['1', '2', '3'], labeldistance=0.25, colors=colors)
radius = 0.45
for w in wedges:
w.set_center((column_index, row_index))
w.set_radius(radius)
w.set_edgecolor('white')
# w.set_linewidth(1)
for t in text:
x, y = t.get_position()
t.set_position((x + column_index, y + row_index))
# We want to show all ticks...
ax.set_xticks(np.arange(data_array.shape[1]))
ax.set_yticks(np.arange(data_array.shape[0]))
fontsize = 10
ax.set_xticklabels(column_labels, fontsize=fontsize)
ax.set_yticklabels(row_labels, fontsize=fontsize)
# X axis labels at top
ax.tick_params(top=True, bottom=False, labeltop=True, labelbottom=False, pad=5)
plt.setp(ax.get_xticklabels(), rotation=55, ha="left", rotation_mode="anchor")
# We want to show all minor ticks...
ax.set_xticks(np.arange(data_array.shape[1] + 1) - .5, minor=True)
ax.set_yticks(np.arange(data_array.shape[0] + 1) - .5, minor=True)
ax.set_xlim(xmin=-.5)
ax.set_ylim(ymin=-.5)
ax.grid(which="minor", color="black", linestyle='-', linewidth=2, clip_on=False)
ax.tick_params(axis="both", which="both", length=0) # hide tick marks
data_array = np.random.rand(3, 4)
row_labels = ['Row1', 'Row2', 'Row3']
column_labels = ['Column1', 'Column2', 'Column3', 'Column4']
fig, ax = plt.subplots(figsize=(1.9 * len(column_labels), 1.2 * len(row_labels)))
ax.set_aspect(1.0)
ax.set_facecolor('white')
heatmap_with_circles(data_array, row_labels, column_labels, ax=ax)
plt.tight_layout()
plt.show()
I want to plot some data x and y in which I need the marker size to depend on a third array z. I could plot them separately (i.e., scatter x and y with size = z, and errorbar without marker, fmc = 'none') and this solves it. The problem is that I need the legend to show the errorbar AND the dot, together:
and not
Code is here with some made-up data:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(1,10,100)
y = 2*x
yerr = np.random(0.5,1.0,100)
z = np.random(1,10,100)
fig, ax = plt.subplots()
plt.scatter(x, y, s=z, facecolors='', edgecolors='red', label='Scatter')
ax.errorbar(x, y, yerr=yerr, xerr=0, fmt='none', mfc='o', color='red', capthick=1, label='Error bar')
plt.legend()
plt.show()
which produces the legend I want to avoid:
In errorbar the argumentmarkersizedoes not accept arrays asscatter` does.
The idea is usually to use a proxy to put into the legend. So while the errorbar in the plot may have no marker, the one in the legend has a marker set.
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(1,10,11)
y = 2*x
yerr = np.random.rand(11)*5
z = np.random.rand(11)*2+5
fig, ax = plt.subplots()
sc = ax.scatter(x, y, s=z**2, facecolors='', edgecolors='red')
errb = ax.errorbar(x, y, yerr=yerr, xerr=0, fmt='none',
color='red', capthick=1, label="errorbar")
proxy = ax.errorbar([], [], yerr=[], xerr=[], marker='o', mfc="none", mec="red",
color='red', capthick=1, label="errorbar")
ax.legend(handles=[proxy], labels=["errorbar"])
plt.show()
I am a newbie in drawing plots. I have written the following code with matplotlib in python to build a scatterplot:
import numpy as np
import matplotlib.pyplot as plt
Edge_matrix=[[269, 270], [270, 269], [274, 275], [275, 274], [341, 342],
[342, 341], [711, 712], [712, 711]]
x=[]; y=[]
for i in Edge_matrix:
x.append(i[0])
y.append(i[1])
#print(x,y)
plt.scatter(x,y, s=1, c='blue', alpha=1)
plt.axhline(576, linewidth=0.3, color='blue', label='zorder=2', zorder=2)
plt.axvline(576, linewidth=0.3, color='blue', label='zorder=2', zorder=2)
plt.show()
I want the x1 and y1 axes start from 0 to 821 and make new x2 axis starting from 1 to 577 to the vertical line and after passing vertical line, again starting from 1 to 243; I need a new y2 axis exactly like x2. Is there any way to change my code for getting my favorite plot?
This is the plot after running the code:
The plot I would like to have is the following:
You may use twin axes to produce another axes for which you may set different ticks and ticklabels.
import numpy as np
import matplotlib.pyplot as plt
Edge_matrix=[[269, 270], [270, 269], [274, 275], [275, 274], [341, 342],
[342, 341], [711, 712], [712, 711]]
x,y = zip(*Edge_matrix)
limits = [0,821]
sec_lim = 243
bp = 576
ax = plt.gca()
ax.set_xlim(limits)
ax.set_ylim(limits)
ax.scatter(x,y, s=1, c='blue', alpha=1)
ax.axhline(bp, linewidth=0.3, color='blue', label='zorder=2', zorder=2)
ax.axvline(bp, linewidth=0.3, color='blue', label='zorder=2', zorder=2)
ax2 = ax.twinx()
ax2.yaxis.tick_right()
ax2.set_ylim(ax.get_ylim())
yticks = ax.get_yticks()
ax2.set_yticks(np.append(yticks[yticks<bp], [bp,bp+sec_lim]) )
ax2.set_yticklabels(np.append(yticks[yticks<bp], [0,sec_lim]).astype(int) )
ax3 = ax.twiny()
ax3.xaxis.tick_top()
ax3.set_xlim(ax.get_xlim())
xticks = ax.get_xticks()
ax3.set_xticks(np.append(xticks[xticks<bp], [bp,bp+sec_lim]) )
ax3.set_xticklabels(np.append(xticks[xticks<bp], [0,sec_lim]).astype(int) )
plt.show()