I have a cost function and its gradient calculated with finite element discretization (values at integrations points) and I have the data in a text file.
The problem is the cost function and its gradient not mathematically explicit, calculated numerically at some points xi in volume V at each increment of time t using the finite element method. The results for the function and its gradient are stored in a text file.
How to minimize this function? any idea?
Thanks for your help
I don’t think you can do what you’re thinking to do. If your finite element simulations are already done then the only thing you can do is to create a proxy model of your results as a function of your parameters. One possibility is to model your results by interpolating them (using for example SciPy griddata https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html) and use that as your proxy model.
Then you select your favorite optimization algorithm, specify your parameters (that have to be part of the griddata interpolant) and you’re ready to go. Depending on how many finite element simulations you have done you can expect very bad/meaningless outcomes (if you have too few) or very good ones (if your finite element simulations cover almost the entire optimization space).
Related
My problem is described in this picture(It's like a Pyramid structure):
The objective function is below:
In this problem, D is known, A is the object that I want to get. It is a layered structure, each block in the upper layer is divided into four sub-blocks in the layer below. And the value of the upper layer node is equal to the sum of the four child nodes of the lower layer. In above example, I used only 2 layers.
What I want to do is simulate the distribution of D with A, so in the objective function is the ratio of two adjacent squares in each row in A compared to the value in D. I do this comparison on each layer and sum them. Then it is all of my objective function. But in the finest layer, the value in A has a constrain A<=1, the value in A can be a number between 0 and 1. I have tried to solve it using Quadratic programming in python library CVXPY. However, it seems the speed is slow.
So I want to solve it in another way, because this is a convex optimization problem, which can guarantee the global optimal solution. What I think is whether it is possible to use the method of derivation. There are two unknown variables in each item, that is, the two items with A in the formula. Partial derivatives are obtained for them, and the restriction of A<=1 is added, then solve using gradient descent method. Is this mathematically feasible, because I don't know much about optimization, and if it is possible, how should I do it? If not possible, what other methods can I use?
I was playing around with Tensorflow creating a customized loss function and this question about general machine learning arose to my head.
My understanding is that the optimization algorithm needs a derivable cost function to find/approach a minimum, however we can use functions that are non-derivable such as the absolute function (there is no derivative when x=0). A more extreme example, I defined my cost function like this:
def customLossFun(x,y):
return tf.sign(x)
and I expected an error when running the code, but it actually worked (it didn't learn anything but it didn't crash).
Am I missing something?
You're missing the fact that the gradient of the sign function is somewhere manually defined in the Tensorflow source code.
As you can see here:
def _SignGrad(op, _):
"""Returns 0."""
x = op.inputs[0]
return array_ops.zeros(array_ops.shape(x), dtype=x.dtype)
the gradient of tf.sign is defined to be always zero. This, of course, is the gradient where the derivate exists, hence everywhere but not in zero.
The tensorflow authors decided to do not check if the input is zero and throw an exception in that specific case
In order to prevent TensorFlow from throwing an error, the only real requirement is that you cost function evaluates to a number for any value of your input variables. From a purely "will it run" perspective, it doesn't know/care about the form of the function its trying to minimize.
In order for your cost function to provide you a meaningful result when TensorFlow uses it to train a model, it additionally needs to 1) get smaller as your model does better and 2) be bounded from below (i.e. it can't go to negative infinity). It's not generally necessary for it to be smooth (e.g. abs(x) has a kink where the sign flips). Tensorflow is always able to compute gradients at any location using automatic differentiation (https://en.wikipedia.org/wiki/Automatic_differentiation, https://www.tensorflow.org/versions/r0.12/api_docs/python/train/gradient_computation).
Of course, those gradients are of more use if you've chose a meaningful cost function isn't isn't too flat.
Ideally, the cost function needs to be smooth everywhere to apply gradient based optimization methods (SGD, Momentum, Adam, etc). But nothing's going to crash if it's not, you can just have issues with convergence to a local minimum.
When the function is non-differentiable at a certain point x, it's possible to get large oscillations if the neural network converges to this x. E.g., if the loss function is tf.abs(x), it's possible that the network weights are mostly positive, so the inference x > 0 at all times, so the network won't notice tf.abs. However, it's more likely that x will bounce around 0, so that the gradient is arbitrarily positive and negative. If the learning rate is not decaying, the optimization won't converge to the local minimum, but will bound around it.
In your particular case, the gradient is zero all the time, so nothing's going to change at all.
If it didn't learn anything, what have you gained ? Your loss function is differentiable almost everywhere but it is flat almost anywhere so the minimizer can't figure out the direction towards the minimum.
If you start out with a positive value, it will most likely be stuck at a random value on the positive side even though the minima on the left side are better (have a lower value).
Tensorflow can be used to do calculations in general and it provides a mechanism to automatically find the derivative of a given expression and can do so across different compute platforms (CPU, GPU) and distributed over multiple GPUs and servers if needed.
But what you implement in Tensorflow does not necessarily have to be a goal function to be minimized. You could use it e.g. to throw random numbers and perform Monte Carlo integration of a given function.
I use the scipy.optimize.minimize ( https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html ) function with method='L-BFGS-B.
An example of what it returns is here above:
fun: 32.372210618549758
hess_inv: <6x6 LbfgsInvHessProduct with dtype=float64>
jac: array([ -2.14583906e-04, 4.09272616e-04, -2.55795385e-05,
3.76587650e-05, 1.49213975e-04, -8.38440428e-05])
message: 'CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH'
nfev: 420
nit: 51
status: 0
success: True
x: array([ 0.75739412, -0.0927572 , 0.11986434, 1.19911266, 0.27866406,
-0.03825225])
The x value correctly contains the fitted parameters. How do I compute the errors associated to those parameters?
TL;DR: You can actually place an upper bound on how precisely the minimization routine has found the optimal values of your parameters. See the snippet at the end of this answer that shows how to do it directly, without resorting to calling additional minimization routines.
The documentation for this method says
The iteration stops when (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= ftol.
Roughly speaking, the minimization stops when the value of the function f that you're minimizing is minimized to within ftol of the optimum. (This is a relative error if f is greater than 1, and absolute otherwise; for simplicity I'll assume it's an absolute error.) In more standard language, you'll probably think of your function f as a chi-squared value. So this roughly suggests that you would expect
Of course, just the fact that you're applying a minimization routine like this assumes that your function is well behaved, in the sense that it's reasonably smooth and the optimum being found is well approximated near the optimum by a quadratic function of the parameters xi:
where Δxi is the difference between the found value of parameter xi and its optimal value, and Hij is the Hessian matrix. A little (surprisingly nontrivial) linear algebra gets you to a pretty standard result for an estimate of the uncertainty in any quantity X that's a function of your parameters xi:
which lets us write
That's the most useful formula in general, but for the specific question here, we just have X = xi, so this simplifies to
Finally, to be totally explicit, let's say you've stored the optimization result in a variable called res. The inverse Hessian is available as res.hess_inv, which is a function that takes a vector and returns the product of the inverse Hessian with that vector. So, for example, we can display the optimized parameters along with the uncertainty estimates with a snippet like this:
ftol = 2.220446049250313e-09
tmp_i = np.zeros(len(res.x))
for i in range(len(res.x)):
tmp_i[i] = 1.0
hess_inv_i = res.hess_inv(tmp_i)[i]
uncertainty_i = np.sqrt(max(1, abs(res.fun)) * ftol * hess_inv_i)
tmp_i[i] = 0.0
print('x^{0} = {1:12.4e} ± {2:.1e}'.format(i, res.x[i], uncertainty_i))
Note that I've incorporated the max behavior from the documentation, assuming that f^k and f^{k+1} are basically just the same as the final output value, res.fun, which really ought to be a good approximation. Also, for small problems, you can just use np.diag(res.hess_inv.todense()) to get the full inverse and extract the diagonal all at once. But for large numbers of variables, I've found that to be a much slower option. Finally, I've added the default value of ftol, but if you change it in an argument to minimize, you would obviously need to change it here.
One approach to this common problem is to use scipy.optimize.leastsq after using minimize with 'L-BFGS-B' starting from the solution found with 'L-BFGS-B'. That is, leastsq will (normally) include and estimate of the 1-sigma errors as well as the solution.
Of course, that approach makes several assumption, including that leastsq can be used and may be appropriate for solving the problem. From a practical view, this requires the objective function return an array of residual values with at least as many elements as variables, not a cost function.
You may find lmfit (https://lmfit.github.io/lmfit-py/) useful here: It supports both 'L-BFGS-B' and 'leastsq' and gives a uniform wrapper around these and other minimization methods, so that you can use the same objective function for both methods (and specify how to convert the residual array into the cost function). In addition, parameter bounds can be used for both methods. This makes it very easy to first do a fit with 'L-BFGS-B' and then with 'leastsq', using the values from 'L-BFGS-B' as starting values.
Lmfit also provides methods to more explicitly explore confidence limits on parameter values in more detail, in case you suspect the simple but fast approach used by leastsq might be insufficient.
It really depends what you mean by "errors". There is no general answer to your question, because it depends on what you're fitting and what assumptions you're making.
The easiest case is one of the most common: when the function you are minimizing is a negative log-likelihood. In that case the inverse of the hessian matrix returned by the fit (hess_inv) is the covariance matrix describing the Gaussian approximation to the maximum likelihood.The parameter errors are the square root of the diagonal elements of the covariance matrix.
Beware that if you are fitting a different kind of function or are making different assumptions, then that doesn't apply.
Minimally, I would like to know how to achieve what is stated in the title. Specifically, signal.lfilter seems like the only implementation of a difference equation filter in scipy, but it is 1D, as shown in the docs. I would like to know how to implement a 2D version as described by this difference equation. If that's as simple as "bro, use this function," please let me know, pardon my naiveté, and feel free to disregard the rest of the post.
I am new to DSP and acknowledging there might be a different approach to answering my question so I will explain the broader goal and give context for the question in the hopes someone knows how do want I want with Scipy, or perhaps a better way than what I explicitly asked for.
To get straight into it, broadly speaking I am using vectorized computation methods (Numpy/Scipy) to implement a Monte Carlo simulation to improve upon a naive for loop. I have successfully abstracted most of my operations to array computation / linear algebra, but a few specific ones (recursive computations) have eluded my intuition and I continually end up in the digital signal processing world when I go looking for how this type of thing has been done by others (that or machine learning but those "frameworks" are much opinionated). The reason most of my google searches end up on scipy.signal or scipy.ndimage library references is clear to me at this point, and subsequent to accepting the "signal" representation of my data, I have spent a considerable amount of time (about as much as reasonable for a field that is not my own) ramping up the learning curve to try and figure out what I need from these libraries.
My simulation entails updating a vector of data representing the state of a system each period for n periods, and then repeating that whole process a "Monte Carlo" amount of times. The updates in each of n periods are inherently recursive as the next depends on the state of the prior. It can be characterized as a difference equation as linked above. Additionally this vector is theoretically indexed on an grid of points with uneven stepsize. Here is an example vector y and its theoretical grid t:
y = np.r_[0.0024, 0.004, 0.0058, 0.0083, 0.0099, 0.0133, 0.0164]
t = np.r_[0.25, 0.5, 1, 2, 5, 10, 20]
I need to iteratively perform numerous operations to y for each of n "updates." Specifically, I am computing the curvature along the curve y(t) using finite difference approximations and using the result at each point to adjust the corresponding y(t) prior to the next update. In a loop this amounts to inplace variable reassignment with the desired update in each iteration.
y += some_function(y)
Not only does this seem inefficient, but vectorizing things seems intuitive given y is a vector to begin with. Furthermore I am interested in preserving each "updated" y(t) along the n updates, which would require a data structure of dimensions len(y) x n. At this point, why not perform the updates inplace in the array? This is wherein lies the question. Many of the update operations I have succesfully vectorized the "Numpy way" (such as adding random variates to each point), but some appear overly complex in the array world.
Specifically, as mentioned above the one involving computing curvature at each element using its neighbouring two elements, and then imediately using that result to update the next row of the array before performing its own curvature "update." I was able to implement a non-recursive version (each row fails to consider its "updated self" from the prior row) of the curvature operation using ndimage generic_filter. Given the uneven grid, I have unique coefficients (kernel weights) for each triplet in the kernel footprint (instead of always using [1,-2,1] for y'' if I had a uniform grid). This last part has already forced me to use a spatial filter from ndimage rather than a 1d convolution. I'll point out, something conceptually similar was discussed in this math.exchange post, and it seems to me only the third response saliently addressed the difference between mathematical notion of "convolution" which should be associative from general spatial filtering kernels that would require two sequential filtering operations or a cleverly merged kernel.
In any case this does not seem to actually address my concern as it is not about 2D recursion filtering but rather having a backwards looking kernel footprint. Additionally, I think I've concluded it is not applicable in that this only allows for "recursion" (backward looking kernel footprints in the spatial filtering world) in a manner directly proportional to the size of the recursion. Meaning if I wanted to filter each of n rows incorporating calculations on all prior rows, it would require a convolution kernel far too big (for my n anyways). If I'm understanding all this correctly, a recursive linear filter is algorithmically more efficient in that it returns (for use in computation) the result of itself applied over the previous n samples (up to a level where the stability of the algorithm is affected) using another companion vector (z). In my case, I would only need to look back one step at output signal y[n-1] to compute y[n] from curvature at x[n] as the rest works itself out like a cumsum. signal.lfilter works for this, but I can't used that to compute curvature, as that requires a kernel footprint that can "see" at least its left and right neighbors (pixels), which is how I ended up using generic_filter.
It seems to me I should be able to do both simultaneously with one filter namely spatial and recursive filtering; or somehow I've missed the maths of how this could be mathematically simplified/combined (convolution of multiples kernels?).
It seems like this should be a common problem, but perhaps it is rarely relevant to do both at once in signal processing and image filtering. Perhaps this is why you don't use signals libraries solely to implement a fast monte carlo simulation; though it seems less esoteric than using a tensor math library to implement a recursive neural network scan ... which I'm attempting to do right now.
EDIT: For those familiar with the theoretical side of DSP, I know that what I am describing, the process of designing a recursive filters with arbitrary impulse responses, is achieved by employing a mathematical technique called the z-transform which I understand is generally used for two things:
converting between the recursion coefficients and the frequency response
combining cascaded and parallel stages into a single filter
Both are exactly what I am trying to accomplish.
Also, reworded title away from FIR / IIR because those imply specific definitions of "recursion" and may be confusing / misnomer.
I'm developing machine learning algorithms which classify images based on training data.
During the image preprocessing stages, there are several parameters which I can modify that affect the data I feed my algorithms (for example, I can change the Hessian Threshold when extracting SURF features). So the flow thus far looks like:
[param1, param2, param3...] => [black box] => accuracy %
My problem is: with so many parameters at my disposal, how can I systematically pick values which give me optimized results/accuracy? A naive approach is to run i nested for-loops (assuming i parameters) and just iterate through all parameter combinations, but if it takes 5 minute to calculate an accuracy from my "black box" system this would take a long, long time.
This being said, are there any algorithms or techniques which can search for optimal parameters in a black box system? I was thinking of taking a course in Discrete Optimization but I'm not sure if that would be the best use of my time.
Thank you for your time and help!
Edit (to answer comments):
I have 5-8 parameters. Each parameter has its own range. One parameter can be 0-1000 (integer), while another can be 0 to 1 (real number). Nothing is stopping me from multithreading the black box evaluation.
Also, there are some parts of the black box that have some randomness to them. For example, one stage is using k-means clustering. Each black box evaluation, the cluster centers may change. I run k-means several times to (hopefully) avoid local optima. In addition, I evaluate the black box multiple times and find the median accuracy in order to further mitigate randomness and outliers.
As a partial solution, a grid search of moderate resolution and range can be recursively repeated in the areas where the n-parameters result in the optimal values.
Each n-dimensioned result from each step would be used as a starting point for the next iteration.
The key is that for each iteration the resolution in absolute terms is kept constant (i.e. keep the iteration period constant) but the range decreased so as to reduce the pitch/granular step size.
I'd call it a ‘contracting mesh’ :)
Keep in mind that while it avoids full brute-force complexity it only reaches exhaustive resolution in the final iteration (this is what defines the final iteration).
Also that the outlined process is only exhaustive on a subset of the points that may or may not include the global minimum - i.e. it could result in a local minima.
(You can always chase your tail though by offsetting the initial grid by some sub-initial-resolution amount and compare results...)
Have fun!
Here is the solution to your problem.
A method behind it is described in this paper.