I use the scipy.optimize.minimize ( https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html ) function with method='L-BFGS-B.
An example of what it returns is here above:
fun: 32.372210618549758
hess_inv: <6x6 LbfgsInvHessProduct with dtype=float64>
jac: array([ -2.14583906e-04, 4.09272616e-04, -2.55795385e-05,
3.76587650e-05, 1.49213975e-04, -8.38440428e-05])
message: 'CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH'
nfev: 420
nit: 51
status: 0
success: True
x: array([ 0.75739412, -0.0927572 , 0.11986434, 1.19911266, 0.27866406,
-0.03825225])
The x value correctly contains the fitted parameters. How do I compute the errors associated to those parameters?
TL;DR: You can actually place an upper bound on how precisely the minimization routine has found the optimal values of your parameters. See the snippet at the end of this answer that shows how to do it directly, without resorting to calling additional minimization routines.
The documentation for this method says
The iteration stops when (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= ftol.
Roughly speaking, the minimization stops when the value of the function f that you're minimizing is minimized to within ftol of the optimum. (This is a relative error if f is greater than 1, and absolute otherwise; for simplicity I'll assume it's an absolute error.) In more standard language, you'll probably think of your function f as a chi-squared value. So this roughly suggests that you would expect
Of course, just the fact that you're applying a minimization routine like this assumes that your function is well behaved, in the sense that it's reasonably smooth and the optimum being found is well approximated near the optimum by a quadratic function of the parameters xi:
where Δxi is the difference between the found value of parameter xi and its optimal value, and Hij is the Hessian matrix. A little (surprisingly nontrivial) linear algebra gets you to a pretty standard result for an estimate of the uncertainty in any quantity X that's a function of your parameters xi:
which lets us write
That's the most useful formula in general, but for the specific question here, we just have X = xi, so this simplifies to
Finally, to be totally explicit, let's say you've stored the optimization result in a variable called res. The inverse Hessian is available as res.hess_inv, which is a function that takes a vector and returns the product of the inverse Hessian with that vector. So, for example, we can display the optimized parameters along with the uncertainty estimates with a snippet like this:
ftol = 2.220446049250313e-09
tmp_i = np.zeros(len(res.x))
for i in range(len(res.x)):
tmp_i[i] = 1.0
hess_inv_i = res.hess_inv(tmp_i)[i]
uncertainty_i = np.sqrt(max(1, abs(res.fun)) * ftol * hess_inv_i)
tmp_i[i] = 0.0
print('x^{0} = {1:12.4e} ± {2:.1e}'.format(i, res.x[i], uncertainty_i))
Note that I've incorporated the max behavior from the documentation, assuming that f^k and f^{k+1} are basically just the same as the final output value, res.fun, which really ought to be a good approximation. Also, for small problems, you can just use np.diag(res.hess_inv.todense()) to get the full inverse and extract the diagonal all at once. But for large numbers of variables, I've found that to be a much slower option. Finally, I've added the default value of ftol, but if you change it in an argument to minimize, you would obviously need to change it here.
One approach to this common problem is to use scipy.optimize.leastsq after using minimize with 'L-BFGS-B' starting from the solution found with 'L-BFGS-B'. That is, leastsq will (normally) include and estimate of the 1-sigma errors as well as the solution.
Of course, that approach makes several assumption, including that leastsq can be used and may be appropriate for solving the problem. From a practical view, this requires the objective function return an array of residual values with at least as many elements as variables, not a cost function.
You may find lmfit (https://lmfit.github.io/lmfit-py/) useful here: It supports both 'L-BFGS-B' and 'leastsq' and gives a uniform wrapper around these and other minimization methods, so that you can use the same objective function for both methods (and specify how to convert the residual array into the cost function). In addition, parameter bounds can be used for both methods. This makes it very easy to first do a fit with 'L-BFGS-B' and then with 'leastsq', using the values from 'L-BFGS-B' as starting values.
Lmfit also provides methods to more explicitly explore confidence limits on parameter values in more detail, in case you suspect the simple but fast approach used by leastsq might be insufficient.
It really depends what you mean by "errors". There is no general answer to your question, because it depends on what you're fitting and what assumptions you're making.
The easiest case is one of the most common: when the function you are minimizing is a negative log-likelihood. In that case the inverse of the hessian matrix returned by the fit (hess_inv) is the covariance matrix describing the Gaussian approximation to the maximum likelihood.The parameter errors are the square root of the diagonal elements of the covariance matrix.
Beware that if you are fitting a different kind of function or are making different assumptions, then that doesn't apply.
Related
I currently solve the following problem:
Basically, this problem is equivalent to find the confidence interval for logistic regression. The objective function is linear (no second derivative), meanwhile, the constraint is non-linear. Specifically, I used n = 1, alpha = 0.05, theta = logit of p where p = [0,1] (for detail, please see binomial distribution). Thus, I have a closed-form solution for the gradient and jacobian for objective and constraints respectively.
In R, I first tried the alabama::auglag function which used augmented Lagrangian method with BFGS (as a default) and nloptr::auglag function which used augmented Lagrangian method with SLSQP (i.e. SLSQP as a local minimizer). Although they were able to find the (global) minimizer most time, sometimes they failed and produced a far-off solution.
After all, I could obtain the best (most stable) result using SLSQP method (nloptr::nloptr with algorithm=NLOPT_LD_SLSQP).
Now, I have a question of why SLSQP produced better result in this setting than the first two methods and why the first two methods (augmented Lagrangian with BFGS and SLSQP as a local optimizer) did not perform well.
Another question is, considering my problem setting, what would be the best method to find the optimizer?
Any comments and suggestions would be much appreciated.
Thanks.
I have two - likely simple - questions that are bothering me, both related to quadratic programming:
1). There are two "standard" forms of the objective function I have found, differing by multiplication of negative 1.
In the R package quadprog, the objective function to be minimized is given as −dTb+12bTDb and in Matlab the objective is given as dTb+12bTDb. How can these be the same? It seems that one has been multiplied through by a negative 1 (which as I understand it would change from a min problem to a max problem.
2). Related to the first question, in the case of using quadprog for minimizing least squares, in order to get the objective function to match the standard form, it is necessary to multiply the objective by a positive 2. Does multiplication by a positive number not change the solution?
EDIT: I had the wrong sign for the Matlab objective function.
Function f(b)=dTb is a linear function thus it is both convex and concave. From optimization standpoint it means you can maximize or minimize it. Nevertheless minimizer of −dTb+12bTDb will be different from dTb+12bTDb, because there is additional quadratic term. Matlab implementation will find the one with plus sign. So if you are using different optimization software you will need to change d→−d to get the same result.
The function −dTb+12bTDb where D is symmetric and convex and thus has unique minimum. In general that is called standard quadratic programming form, but that doesn't really matter. The other function dTb−12bTDb is concave function which has unique maximum. It is easy to show that for, say, bounded function f(x) from above the following holds:
argmaxxf=argminx−f
Using the identity above value b∗1 where −dTb+12bTDb achieves minimum is the same as the value b∗2 which achieves maximum at dTb−12bTDb, that is b∗1=b∗2.
Programmatically it doesn't matter if you are minimizing −dTb+12bTDb or maximizing the other one. These are implementation-dependent details.
No it does not. ∀α>0 if x∗=argmaxxf(x), then x∗=argmaxxαf(x). This can be showed by contradiction.
I have some observational data and I want to fit some model parameters by using lmfit.Minimizer() to minimize an error function which, for reasons I won't get into here, must return a float instead of an array of residuals. This means that I cannot use the Leastsq method to minimize the function. In practice, methods nelder, BFGS and powell converge fine, but these methods do not provide the covariance of the best-fit parameters (MinimizerResult.covar).
I would like to know if thee is a simple way to compute this covariance when using any of the non-Leastsq methods.
It is true that the leastsq method is the only method that can calculate error bars and that this requires a residual array (with more elements than variables!).
It turns out that some work has been done in lmfit toward the goal of being able to compute uncertainties for scalar minimizers, but it is not complete. See https://github.com/lmfit/lmfit-py/issues/169 and https://github.com/lmfit/lmfit-py/pull/481. If you're interested in helping, that would be great!
But, yes, you could compute the covariance by hand. For each variable, you would need to make a small perturbation to its value (ideally around 1-sigma, but since that is what you're trying to calculate, you probably don't know it) and then fix that value and optimize all the other values. In this way you can compute the Jacobian matrix (derivative of the residual array with respect to the variables).
From the Jacobian matrix, the covariance matrix is (assuming there are no singularities):
covar = numpy.inv(numpy.dot(numpy.transpose(jacobian), jacobian))
I want to minimize a function, subject to constraints (the variables are non-negative). I can compute the gradient and Hessian exactly. So I want something like:
result = scipy.optimize.minimize(objective, x0, jac=grad, hess=hess, bounds=bds)
I need to specify a method for the optimization (http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html). Unfortunately I can't seem to find a method that allows for both user-specified bounds and a Hessian!
This is particularly annoying because methods "TNC" and "Newton-CG" seem essentially the same, however TNC estimates Hessian internally (in C code), while Newton-CG doesn't allow for constraints.
So, how can I do a constrained optimization with user-specified Hessian? Seems like there ought to be an easy option for this in scipy -- am I missing something?
I realized a workaround for my problem, which is to transform the constrained optimization into an unconstrained optimization.
In my case, since I have the constraint x > 0, I decided to optimize over log(x) instead of x. This was easy to do for my problem since I am using automatic differentiation.
Still, this seems like a somewhat unsatisfying solution -- I still think scipy should allow some constrained second-order minimization method.
just bumped into exactly this point myself. I think the TNC applies an active set to the line search of the CG, not the direction of the line search. Conversely the Hessian chooses the direction of the line. So, er, could maybe cut the line search out of NCG and drop it into TNC. Problem is when you are at the boundary the Hessian might not take you out of it.
How about using TNC for an extremely sloppy first guess [give it a really large error bound to hit], then use NCG with a small number of iterations, check: if on boundary back to TNC, else continue with NCG. Ugh...
Yes, or use log(x). I'm going to follow your lead.
Greetings. I'm trying to approximate the function
Log10[x^k0 + k1], where .21 < k0 < 21, 0 < k1 < ~2000, and x is integer < 2^14.
k0 & k1 are constant. For practical purposes, you can assume k0 = 2.12, k1 = 2660. The desired accuracy is 5*10^-4 relative error.
This function is virtually identical to Log[x], except near 0, where it differs a lot.
I already have came up with a SIMD implementation that is ~1.15x faster than a simple lookup table, but would like to improve it if possible, which I think is very hard due to lack of efficient instructions.
My SIMD implementation uses 16bit fixed point arithmetic to evaluate a 3rd degree polynomial (I use least squares fit). The polynomial uses different coefficients for different input ranges. There are 8 ranges, and range i spans (64)2^i to (64)2^(i + 1).
The rational behind this is the derivatives of Log[x] drop rapidly with x, meaning a polynomial will fit it more accurately since polynomials are an exact fit for functions that have a derivative of 0 beyond a certain order.
SIMD table lookups are done very efficiently with a single _mm_shuffle_epi8(). I use SSE's float to int conversion to get the exponent and significand used for the fixed point approximation. I also software pipelined the loop to get ~1.25x speedup, so further code optimizations are probably unlikely.
What I'm asking is if there's a more efficient approximation at a higher level?
For example:
Can this function be decomposed into functions with a limited domain like
log2((2^x) * significand) = x + log2(significand)
hence eliminating the need to deal with different ranges (table lookups). The main problem I think is adding the k1 term kills all those nice log properties that we know and love, making it not possible. Or is it?
Iterative method? don't think so because the Newton method for log[x] is already a complicated expression
Exploiting locality of neighboring pixels? - if the range of the 8 inputs fall in the same approximation range, then I can look up a single coefficient, instead of looking up separate coefficients for each element. Thus, I can use this as a fast common case, and use a slower, general code path when it isn't. But for my data, the range needs to be ~2000 before this property hold 70% of the time, which doesn't seem to make this method competitive.
Please, give me some opinion, especially if you're an applied mathematician, even if you say it can't be done. Thanks.
You should be able to improve on least-squares fitting by using Chebyshev approximation. (The idea is, you're looking for the approximation whose worst-case deviation in a range is least; least-squares instead looks for the one whose summed squared difference is least.) I would guess this doesn't make a huge difference for your problem, but I'm not sure -- hopefully it could reduce the number of ranges you need to split into, somewhat.
If there's already a fast implementation of log(x), maybe compute P(x) * log(x) where P(x) is a polynomial chosen by Chebyshev approximation. (Instead of trying to do the whole function as a polynomial approx -- to need less range-reduction.)
I'm an amateur here -- just dipping my toe in as there aren't a lot of answers already.
One observation:
You can find an expression for how large x needs to be as a function of k0 and k1, such that the term x^k0 dominates k1 enough for the approximation:
x^k0 +k1 ~= x^k0, allowing you to approximately evaluate the function as
k0*Log(x).
This would take care of all x's above some value.
I recently read how the sRGB model compresses physical tri stimulus values into stored RGB values.
It basically is very similar to the function I try to approximate, except that it's defined piece wise:
k0 x, x < 0.0031308
k1 x^0.417 - k2 otherwise
I was told the constant addition in Log[x^k0 + k1] was to make the beginning of the function more linear. But that can easily be achieved with a piece wise approximation. That would make the approximation a lot more "uniform" - with only 2 approximation ranges. This should be cheaper to compute due to no longer needing to compute an approximation range index (integer log) and doing SIMD coefficient lookup.
For now, I conclude this will be the best approach, even though it doesn't approximate the function precisely. The hard part will be proposing this change and convincing people to use it.