pine script series manipulation - indexing

I made a lot of changes to the code. It is as follows:
//#version=4
study("Doubt",overlay=true)
// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © m1akitak1r
tf = input(title="Resolution", type=input.resolution, defval ="current")
up = high[2]<high[1] and high[0]<high[1]
down = low[2]>low[1] and low[0]>low[1]
lows=0.0
highs=0.0
highs:=up?high[1]:na
lows:=down?low[1]:na
lowLocations=down?bar_index:na//[1]
highLocations=up?bar_index:na//SPHBars[0]
pivots= up?high[1]:down?low[1]:na
plot(pivots, "pivots", color=color.lime, linewidth=7, style=plot.style_circles, transp=0, offset=-1, join=true)
When it is executed the sample result is like this
Result
It essentially connects the highs and lows detected above. The highs and lows are some sort of pivots. The highs and lows should be alternating meaning a low should exist between two highs and a high should exist between two lows. But as can be seen there are places where there are multiple highs between two lows and multiple lows between two highs. The code should be modified such that wherever there are multiple highs between two lows, the highest high of those multiple highs only should be retained and wherever there are multiple lows between two highs, the lowest of those multiple lows only should be retained. The final required connection should be as marked drawn manually [I have marked the red lines manually where multiple highs and lows need to be eliminated where as the other alternating high lows should not be affected]. The correct alternating high and low locations should be stored in lowLocations and highLocations.

The information provided is not clear but I think what you're looking for is this..
if(crossunder(close,localminima)
//do something
Note that you cannot have conditional plots, that means you cannot call plot() inside of an if() condition

Related

How to access net displacements in pyiron

Using pyiron, I want to calculate the mean square displacement of the ions in my system. How do I see the total displacement (i.e. not folded back by periodic boundary conditions) without dumping very frequently and checking when an atom passes over the boundary and gets wrapped?
Try to compare job['output/generic/unwrapped_positions'][-1] and job.structure.positions+job.output.total_displacements[-1]. If they deliver the same values, it's definitely fine both ways. If not, you can post the relevant lines in your notebook here.
I'd like to add a few comments to Jan's answer:
While job['output/generic/unwrapped_positions'] returns the unwrapped positions parsed from the output files, job.output.total_displacements returns the displacement of atoms calculated from each pair of consecutive snapshots. So if an atom moves more than half the box length in any direction, job.output.total_displacements will give wrong coordinates. Therefore, job['output/generic/unwrapped_positions'] is generally more trustworthy, but it is not available in all the codes (since some codes simply do not provide an output for unwrapped positions).
Moreover, if an interactive job is used, it is possible that job.structure.positions does not return the initial positions, i.e. job.structure.positions+job.output.total_displacements won't be initial positions + displacements.
So, in short, my answer to your question would be rather "Use job['output/generic/unwrapped_positions'] and if it's not available, use job.structure.positions+job.output.total_displacements but be aware of potential problems you might be running into."

CorePlot - dynamic x-axis data using two arrays

This is more of an open discussion topic than anything else. Currently I'm storing 50 Float32 values in my NSMutableArray *voltageArray before I refresh my CPTPlot *plot. Every time I obtain 50 values, I remove the previous 50 from the voltageArray and repeat the process....always displaying the 50 values in "real time" on my plot.
However, the data I'm receiving (which is voltage coming from a Cypress BLE module equipped with a pressure transducer) is so quick that any variation (0.4 V to 4.0 V; no pressure to lots of pressure) cannot be seen on my graph. It just shows up as a straight line, varying up and down without showing increased or decreased slopes.
To show overall change, I wanted to take those 50 values, store them in the first index of another NSMutableArray *stampArray and use the index of stampArray to display information. Meanwhile, the numberOfRecordsForPlot: method would look like this:
- (NSUInteger)numberOfRecordsForPlot:(CPTPlot *)plotnumberOfRecords {
return (DATA_PER_STAMP * _stampCount);
}
This would initially be 50, then after 50 pieces of data are captured from the BLE module, _stampCount would increase by one, and the number of records for plot would increase by 50 (till about 2500-10000 range, then I'd refresh the whole the thing and restart the process.)
Is this the right approach? How would I be able to make the first 50 points stay on the graph, while building the next 50, etc.? Imagine an y = x^2 graph, and what the graph looks like when applying integration (the whole breaking the area under the curve into rectangles).
Look at the "Real Time Plot" demo in the Plot Gallery example app included with Core Plot. It starts off with an empty plot, adding a new point each cycle until reaching the maximum number of points. After that, one old point is removed for each new one added so the total number stays constant. The demo uses a timer to pass random data to the plot, but your app can of course collect data from anywhere. Be sure to always interact with the graph from the main thread.
I doubt you'll be able to display 10,000 data points on one plot (does your display have enough pixels to resolve that many points?). If not, you'll get much better drawing performance if you filter and/or smooth the data to remove some of the points before sending them to the plot.

measuring time between two rising edges in beaglebone

I am reading sensor output as square wave(0-5 volt) via oscilloscope. Now I want to measure frequency of one period with Beaglebone. So I should measure the time between two rising edges. However, I don't have any experience with working Beaglebone. Can you give some advices or sample codes about measuring time between rising edges?
How deterministic do you need this to be? If you can tolerate some inaccuracy, you can probably do it on the main Linux OS; if you want to be fancy pants, this seems like a potential use case for the BBB's PRU's (which I unfortunately haven't used so take this with substantial amounts of salt). I would expect you'd be able to write PRU code that just sits with an infinite outerloop and then inside that loop, start looping until it sees the pin shows 0, then starts looping until the pin shows 1 (this is the first rising edge), then starts counting until either the pin shows 0 again (this would then be the falling edge) or another loop to the next rising edge... either way, you could take the counter value and you should be able to directly convert that into time (the PRU is states as having fixed frequency for each instruction, and is a 200Mhz (50ns/instruction). Assuming your loop is something like
#starting with pin low
inner loop 1:
registerX = loadPin
increment counter
jump if zero registerX to inner loop 1
# pin is now high
inner loop 2:
registerX = loadPin
increment counter
jump if one registerX to inner loop 2
# pin is now low again
That should take 3 instructions per counter increment, so you can get the time as 3 * counter * 50 ns.
As suggested by Foon in his answer, the PRUs are a good fit for this task (although depending on your requirements it may be fine to use the ARM processor and standard GPIO). Please note that (as far as I know) both the regular GPIOs and the PRU inputs are based on 3.3V logic, and connecting a 5V signal might fry your board! You will need an additional component or circuit to convert from 5V to 3.3V.
I've written a basic example that measures timing between rising edges on the header pin P8.15 for my own purpose of measuring an engine's rpm. If you decide to use it, you should check the timing results against a known reference. It's about right but I haven't checked it carefully at all. It is implemented using PRU assembly and uses the pypruss python module to simplify interfacing.

Method to get non-base units?

Is there a method of using the exponent properties of LabView units for carrying custom units? For example I would find it convenient to use milli-Amperes instead of Amperes in my data wires.
My first attempt at doing so looks like this, but trying to get the value out at the end gives me nothing.
I would find it convenient to use milli-Amperes instead of Amperes in my data wires
For a wire, it's not possible, and it's not a problem, here's why:
I'm afraid what you want make little sense, since you're milli-Amperes instead of Amperes refers to representing your data, while a wire is just raw data. Adding the milli- to a floating point changes the exponent, not the mantissa, so there's no loss or gain of precision in the value that your number carries.
Now if we talk about an indicator which is technically a display of the wire value, you change the unit from "A" to "mA" to have the display you want.
Finally, in your attempt with "set numeric info", the -3 factor added next to Amperes means the unit is A^-3, not mA.
You can use data that don't use units, however than you will loose your automatic check of the units.
For display properties you can tweak the display format to show different outputs:
This format string is constructed as following:
% numeric
^ engineering notation, exponents in multiples of three
# no trailing zeros
_6 six significat digits
e scientific notation (1e1 for instance)
The prefix is the best way to affect the presentation of the value on a specific front panel.
When passing data from VI to VI, the prefix is not passed, and the data uses the base ( Amps, Volts, etc...)
In my example below, the unitless value 3 is assigned units of Amp in mA.vi. The front panel indicator is set to show units of mA.
In Watts.vi I multiply the Amps OUT of mA.vi by a constant of 9V and the result is wired to the indicator x*y.
x*y has units of W and I changed the prefix to k for presentation.
The NI forums have several threads that report certain functions (square and square root specifically) can cause unit errors or broken wires. Most folks don't even know the units capability exists, and most that do have tried and abandoned them. :)

Can I run a GA to optimize wavelet transform?

I am running a wavelet transform (cmor) to estimate damping and frequencies that exists in a signal.cmor has 2 parameters that I can change them to get more accurate results. center frequency(Fc) and bandwidth frequency(Fb). If I construct a signal with few freqs and damping then I can measure the error of my estimation(fig 2). but in actual case I have a signal and I don't know its freqs and dampings so I can't measure the error.so a friend in here suggested me to reconstruct the signal and find error by measuring the difference between the original and reconstructed signal e(t)=|x(t)−x^(t)|.
so my question is:
Does anyone know a better function to find the error between reconstructed and original signal,rather than e(t)=|x(t)−x^(t)|.
can I use GA to search for Fb and Fc? or do you know a better search method?
Hope this picture shows what I mean, the actual case is last one. others are for explanations
Thanks in advance
You say you don't know the error until after running the wavelet transform, but that's fine. You just run a wavelet transform for every individual the GA produces. Those individuals with lower errors are considered fitter and survive with greater probability. This may be very slow, but conceptually at least, that's the idea.
Let's define a Chromosome datatype containing an encoded pair of values, one for the frequency and another for the damping parameter. Don't worry too much about how their encoded for now, just assume it's an array of two doubles if you like. All that's important is that you have a way to get the values out of the chromosome. For now, I'll just refer to them by name, but you could represent them in binary, as an array of doubles, etc. The other member of the Chromosome type is a double storing its fitness.
We can obviously generate random frequency and damping values, so let's create say 100 random Chromosomes. We don't know how to set their fitness yet, but that's fine. Just set it to zero at first. To set the real fitness value, we're going to have to run the wavelet transform once for each of our 100 parameter settings.
for Chromosome chr in population
chr.fitness = run_wavelet_transform(chr.frequency, chr.damping)
end
Now we have 100 possible wavelet transforms, each with a computed error, stored in our set called population. What's left is to select fitter members of the population, breed them, and allow the fitter members of the population and offspring to survive into the next generation.
while not done
offspring = new_population()
while count(offspring) < N
parent1, parent2 = select_parents(population)
child1, child2 = do_crossover(parent1, parent2)
mutate(child1)
mutate(child2)
child1.fitness = run_wavelet_transform(child1.frequency, child1.damping)
child2.fitness = run_wavelet_transform(child2.frequency, child2.damping)
offspring.add(child1)
offspring.add(child2)
end while
population = merge(population, offspring)
end while
There are a bunch of different ways to do the individual steps like select_parents, do_crossover, mutate, and merge here, but the basic structure of the GA stays pretty much the same. You just have to run a brand new wavelet decomposition for every new offspring.