matplotlib add artist not showing labels on legend - matplotlib

this is my first question here and one probably very simple, however I tried to fix any mistake and look more info but with no success, I am new to programming graphs using matplotlib, could anyone help me out? thank you in advance
The goal of the program was to graphic a circle and a label, but label was not appearing:
import matplotlib.pyplot as plt
circle1 = plt.Circle((0, 0), 0.2, color='r',label='Men')
fig, ax = plt.subplots()
ax.add_artist(circle1)
circle1 = plt.Circle((0, 0), 2, color='r',label='Men')
plt.legend(loc='best')
plt.show()

Based on your code, you are only plotting the first circle (with radius 0.2). You never call the second circle, so it does not show up. Not sure what you are going for here. However, BigBen is correct, just use ax.add_patch(circle1) instead and it will show with the labels. With this minor change, your plot will look like this:
You would also want to set x and y axis limits in order to see the entire circle. This code below will allow you to see both circles in full with different labels.
import matplotlib.pyplot as plt
circle1 = plt.Circle((0, 0), 0.2, color='r',label='Small Red',zorder=2)
circle2 = plt.Circle((0, 0), 2, color='b',label='Big Blue',zorder=1)
fig, ax = plt.subplots()
ax.add_patch(circle1)
ax.add_patch(circle2)
plt.legend(loc='best')
ax.set_xlim([-3,3])
ax.set_ylim([-3,3])
plt.show()
And your plot will look like this:
The zorder argument will decide which object shows up in front of the other. They will appear front-to-back in descending order.

Related

How to se BG color over an Histogram graph in matplotlb [duplicate]

I am making a scatter plot in matplotlib and need to change the background of the actual plot to black. I know how to change the face color of the plot using:
fig = plt.figure()
fig.patch.set_facecolor('xkcd:mint green')
My issue is that this changes the color of the space around the plot. How to I change the actual background color of the plot?
Use the set_facecolor(color) method of the axes object, which you've created one of the following ways:
You created a figure and axis/es together
fig, ax = plt.subplots(nrows=1, ncols=1)
You created a figure, then axis/es later
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1) # nrows, ncols, index
You used the stateful API (if you're doing anything more than a few lines, and especially if you have multiple plots, the object-oriented methods above make life easier because you can refer to specific figures, plot on certain axes, and customize either)
plt.plot(...)
ax = plt.gca()
Then you can use set_facecolor:
ax.set_facecolor('xkcd:salmon')
ax.set_facecolor((1.0, 0.47, 0.42))
As a refresher for what colors can be:
matplotlib.colors
Matplotlib recognizes the following formats to specify a color:
an RGB or RGBA tuple of float values in [0, 1] (e.g., (0.1, 0.2, 0.5) or (0.1, 0.2, 0.5, 0.3));
a hex RGB or RGBA string (e.g., '#0F0F0F' or '#0F0F0F0F');
a string representation of a float value in [0, 1] inclusive for gray level (e.g., '0.5');
one of {'b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'};
a X11/CSS4 color name;
a name from the xkcd color survey; prefixed with 'xkcd:' (e.g., 'xkcd:sky blue');
one of {'tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan'} which are the Tableau Colors from the ‘T10’ categorical palette (which is the default color cycle);
a “CN” color spec, i.e. 'C' followed by a single digit, which is an index into the default property cycle (matplotlib.rcParams['axes.prop_cycle']); the indexing occurs at artist creation time and defaults to black if the cycle does not include color.
All string specifications of color, other than “CN”, are case-insensitive.
One method is to manually set the default for the axis background color within your script (see Customizing matplotlib):
import matplotlib.pyplot as plt
plt.rcParams['axes.facecolor'] = 'black'
This is in contrast to Nick T's method which changes the background color for a specific axes object. Resetting the defaults is useful if you're making multiple different plots with similar styles and don't want to keep changing different axes objects.
Note: The equivalent for
fig = plt.figure()
fig.patch.set_facecolor('black')
from your question is:
plt.rcParams['figure.facecolor'] = 'black'
Something like this? Use the axisbg keyword to subplot:
>>> from matplotlib.figure import Figure
>>> from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
>>> figure = Figure()
>>> canvas = FigureCanvas(figure)
>>> axes = figure.add_subplot(1, 1, 1, axisbg='red')
>>> axes.plot([1,2,3])
[<matplotlib.lines.Line2D object at 0x2827e50>]
>>> canvas.print_figure('red-bg.png')
(Granted, not a scatter plot, and not a black background.)
Simpler answer:
ax = plt.axes()
ax.set_facecolor('silver')
If you already have axes object, just like in Nick T's answer, you can also use
ax.patch.set_facecolor('black')
The easiest thing is probably to provide the color when you create the plot :
fig1 = plt.figure(facecolor=(1, 1, 1))
or
fig1, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, facecolor=(1, 1, 1))
One suggestion in other answers is to use ax.set_axis_bgcolor("red"). This however is deprecated, and doesn't work on MatPlotLib >= v2.0.
There is also the suggestion to use ax.patch.set_facecolor("red") (works on both MatPlotLib v1.5 & v2.2). While this works fine, an even easier solution for v2.0+ is to use
ax.set_facecolor("red")
In addition to the answer of NickT, you can also delete the background frame by setting it to "none" as explain here: https://stackoverflow.com/a/67126649/8669161
import matplotlib.pyplot as plt
plt.rcParams['axes.facecolor'] = 'none'
I think this might be useful for some people:
If you want to change the color of the background that surrounds the figure, you can use this:
fig.patch.set_facecolor('white')
So instead of this:
you get this:
Obviously you can set any color you'd want.
P.S. In case you accidentally don't see any difference between the two plots, try looking at StackOverflow using darkmode.

How to change Bar-Chart Figure Size [duplicate]

I can't figure out how to rotate the text on the X Axis. Its a time stamp, so as the number of samples increase, they get closer and closer until they overlap. I'd like to rotate the text 90 degrees so as the samples get closer together, they aren't overlapping.
Below is what I have, it works fine with the exception that I can't figure out how to rotate the X axis text.
import sys
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import datetime
font = {'family' : 'normal',
'weight' : 'bold',
'size' : 8}
matplotlib.rc('font', **font)
values = open('stats.csv', 'r').readlines()
time = [datetime.datetime.fromtimestamp(float(i.split(',')[0].strip())) for i in values[1:]]
delay = [float(i.split(',')[1].strip()) for i in values[1:]]
plt.plot(time, delay)
plt.grid(b='on')
plt.savefig('test.png')
This works for me:
plt.xticks(rotation=90)
Many "correct" answers here but I'll add one more since I think some details are left out of several. The OP asked for 90 degree rotation but I'll change to 45 degrees because when you use an angle that isn't zero or 90, you should change the horizontal alignment as well; otherwise your labels will be off-center and a bit misleading (and I'm guessing many people who come here want to rotate axes to something other than 90).
Easiest / Least Code
Option 1
plt.xticks(rotation=45, ha='right')
As mentioned previously, that may not be desirable if you'd rather take the Object Oriented approach.
Option 2
Another fast way (it's intended for date objects but seems to work on any label; doubt this is recommended though):
fig.autofmt_xdate(rotation=45)
fig you would usually get from:
fig = plt.gcf()
fig = plt.figure()
fig, ax = plt.subplots()
fig = ax.figure
Object-Oriented / Dealing directly with ax
Option 3a
If you have the list of labels:
labels = ['One', 'Two', 'Three']
ax.set_xticks([1, 2, 3])
ax.set_xticklabels(labels, rotation=45, ha='right')
In later versions of Matplotlib (3.5+), you can just use set_xticks alone:
ax.set_xticks([1, 2, 3], labels, rotation=45, ha='right')
Option 3b
If you want to get the list of labels from the current plot:
# Unfortunately you need to draw your figure first to assign the labels,
# otherwise get_xticklabels() will return empty strings.
plt.draw()
ax.set_xticks(ax.get_xticks())
ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha='right')
As above, in later versions of Matplotlib (3.5+), you can just use set_xticks alone:
ax.set_xticks(ax.get_xticks(), ax.get_xticklabels(), rotation=45, ha='right')
Option 4
Similar to above, but loop through manually instead.
for label in ax.get_xticklabels():
label.set_rotation(45)
label.set_ha('right')
Option 5
We still use pyplot (as plt) here but it's object-oriented because we're changing the property of a specific ax object.
plt.setp(ax.get_xticklabels(), rotation=45, ha='right')
Option 6
This option is simple, but AFAIK you can't set label horizontal align this way so another option might be better if your angle is not 90.
ax.tick_params(axis='x', labelrotation=45)
Edit:
There's discussion of this exact "bug" but a fix hasn't been released (as of 3.4.0):
https://github.com/matplotlib/matplotlib/issues/13774
Easy way
As described here, there is an existing method in the matplotlib.pyplot figure class that automatically rotates dates appropriately for you figure.
You can call it after you plot your data (i.e.ax.plot(dates,ydata) :
fig.autofmt_xdate()
If you need to format the labels further, checkout the above link.
Non-datetime objects
As per languitar's comment, the method I suggested for non-datetime xticks would not update correctly when zooming, etc. If it's not a datetime object used as your x-axis data, you should follow Tommy's answer:
for tick in ax.get_xticklabels():
tick.set_rotation(45)
Try pyplot.setp. I think you could do something like this:
x = range(len(time))
plt.xticks(x, time)
locs, labels = plt.xticks()
plt.setp(labels, rotation=90)
plt.plot(x, delay)
Appart from
plt.xticks(rotation=90)
this is also possible:
plt.xticks(rotation='vertical')
I came up with a similar example. Again, the rotation keyword is.. well, it's key.
from pylab import *
fig = figure()
ax = fig.add_subplot(111)
ax.bar( [0,1,2], [1,3,5] )
ax.set_xticks( [ 0.5, 1.5, 2.5 ] )
ax.set_xticklabels( ['tom','dick','harry'], rotation=45 ) ;
If you want to apply rotation on the axes object, the easiest way is using tick_params. For example.
ax.tick_params(axis='x', labelrotation=90)
Matplotlib documentation reference here.
This is useful when you have an array of axes as returned by plt.subplots, and it is more convenient than using set_xticks because in that case you need to also set the tick labels, and also more convenient that those that iterate over the ticks (for obvious reasons)
If using plt:
plt.xticks(rotation=90)
In case of using pandas or seaborn to plot, assuming ax as axes for the plot:
ax.set_xticklabels(ax.get_xticklabels(), rotation=90)
Another way of doing the above:
for tick in ax.get_xticklabels():
tick.set_rotation(45)
My answer is inspired by cjohnson318's answer, but I didn't want to supply a hardcoded list of labels; I wanted to rotate the existing labels:
for tick in ax.get_xticklabels():
tick.set_rotation(45)
The simplest solution is to use:
plt.xticks(rotation=XX)
but also
# Tweak spacing to prevent clipping of tick-labels
plt.subplots_adjust(bottom=X.XX)
e.g for dates I used rotation=45 and bottom=0.20 but you can do some test for your data
import pylab as pl
pl.xticks(rotation = 90)
To rotate the x-axis label to 90 degrees
for tick in ax.get_xticklabels():
tick.set_rotation(45)
It will depend on what are you plotting.
import matplotlib.pyplot as plt
x=['long_text_for_a_label_a',
'long_text_for_a_label_b',
'long_text_for_a_label_c']
y=[1,2,3]
myplot = plt.plot(x,y)
for item in myplot.axes.get_xticklabels():
item.set_rotation(90)
For pandas and seaborn that give you an Axes object:
df = pd.DataFrame(x,y)
#pandas
myplot = df.plot.bar()
#seaborn
myplotsns =sns.barplot(y='0', x=df.index, data=df)
# you can get xticklabels without .axes cause the object are already a
# isntance of it
for item in myplot.get_xticklabels():
item.set_rotation(90)
If you need to rotate labels you may need change the font size too, you can use font_scale=1.0 to do that.

Copying axis limits from one subplot ('equal' aspect) to another

In a figure with 2x2 subplots, I need both the subplots on the right to share the x-axis, but the ones on the left not to share their axis. In addition, I need the subplot that is determining the x-axis limits to have 'equal' aspect ratio. I tried this:
import matplotlib.pyplot as plt
fig, ax = plt.subplots(2, 2, figsize=(12, 9))
# Subplot [0,1]
ax[0,1].axis('equal')
ax[0,1].plot(...)
[xmin01, xmax01, ymin01, ymax01] = self.ax[0,1].axis()
# Subplot [1,1]
ax[1,1].plot(...)
ax[1,1].set_xlim(left=xmin01, right=xmax01)
This is not working: the limits of the x-axis returned by axis() are near the data limits and are not the real limits shown in the graphed subplot. Changing the position of ax[0,1].axis('equal') after the plot command has no effect. Any idea?
Looking into the pyplot source code I discovered that axis('equal') is calling the method set_aspect(). This latter method is modifying the variable self._aspect but it is not further updating anything related! Then, I looked for and found the method that is really updating the aspect ratio: it is named apply_aspect(). So, it doesn't seem very elegant, but at least my problem is solved as shown:
import matplotlib.pyplot as plt
fig, ax = plt.subplots(2, 2, figsize=(12, 9))
# Subplot [0,1]
ax[0,1].axis('equal')
ax[0,1].plot(...)
ax[0,1].apply_aspect()
[xmin01, xmax01, ymin01, ymax01] = self.ax[0,1].axis()
# Subplot [1,1]
ax[1,1].plot(...)
ax[1,1].set_xlim(left=xmin01, right=xmax01)

Fit graph to colorbar in matplotlib

I have an imshow graph that shows a colobar for numerical values. The colorbar is much bigger than the graph. Is there a way to scale them so they end up the same size, preferably without affecting the aspect ratio of the graph?
grid = np.ma.array(grid, mask=np.isnan(grid))
plot.imshow(grid, interpolation='nearest', aspect='equal', vmax = private.vmax, vmin = private.vmin)
plot.minorticks_off()
plot.set_xticks(range(len(placex)))
plot.set_yticks(range(len(placey)))
plot.set_xticklabels(placex)
plot.set_yticklabels(placey, rotation = 0)
plot.colorbar()
plot.show()
You can specify an axes-object by any of the built-in methods of matplotlib and then use it for your colorbar, e.g.:
import matplotlib.pyplot as plt
import numpy as np
ax2 = plt.subplot2grid((1,6), (0, 5), colspan=1)
ax1 = plt.subplot2grid((1,6), (0, 0), colspan=5)
plt.imshow(np.random.random((10,10)))
plt.colorbar(cax=ax2)
plt.show()
This will result in something like:
Though, this doesn't help if your imshow-axes becomes very flat (due to aspect="equal", this might happen).
If you want to handle such cases, you can either
Adjust the figure size to the aspect of your grid, e.g.
fig = figure(figsize=grid.shape[1]*1.5/dpi, grid.shape[0]/dpi)
Read the coordinates of ax1 AFTER plotting, create ax2 just after that with the appropriately transformed coordinates and then use ax2 for the colorbar. This doesn't behave nicely when you resize the window, but might work out if you just create plots as image files automatically.
If 2. is what you need, I can add an example for this, but I will only do this work if you are sure this is what you want.
Greetings,
Thorsten

How can I set the background color on specific areas of a pyplot figure?

I've managed to plot a series of points with the following code:
plt = pp.figure()
for i in range(spt.shape[1]):
spktrain = spt[0,i]
for trial in spktrain:
non_z = np.nonzero(trial)
non_z = non_z[0]
pp.plot(t[non_z], trial[non_z], 'bo')
I would like to place alternating bands of white and gray background on the figure in order to separate the data from each iteration of the outer for loop. In other words, I would like the data from each "spktrain" to have it's own background color (the data does not overlap).
How can I go about changing the background color of a figure in a specific region?
You can use axhspan and/or axvspan like this:
import matplotlib.pyplot as plt
plt.figure()
plt.xlim(0, 5)
plt.ylim(0, 5)
for i in range(0, 5):
plt.axhspan(i, i+.2, facecolor='0.2', alpha=0.5)
plt.axvspan(i, i+.5, facecolor='b', alpha=0.5)
plt.show()