Fit graph to colorbar in matplotlib - matplotlib

I have an imshow graph that shows a colobar for numerical values. The colorbar is much bigger than the graph. Is there a way to scale them so they end up the same size, preferably without affecting the aspect ratio of the graph?
grid = np.ma.array(grid, mask=np.isnan(grid))
plot.imshow(grid, interpolation='nearest', aspect='equal', vmax = private.vmax, vmin = private.vmin)
plot.minorticks_off()
plot.set_xticks(range(len(placex)))
plot.set_yticks(range(len(placey)))
plot.set_xticklabels(placex)
plot.set_yticklabels(placey, rotation = 0)
plot.colorbar()
plot.show()

You can specify an axes-object by any of the built-in methods of matplotlib and then use it for your colorbar, e.g.:
import matplotlib.pyplot as plt
import numpy as np
ax2 = plt.subplot2grid((1,6), (0, 5), colspan=1)
ax1 = plt.subplot2grid((1,6), (0, 0), colspan=5)
plt.imshow(np.random.random((10,10)))
plt.colorbar(cax=ax2)
plt.show()
This will result in something like:
Though, this doesn't help if your imshow-axes becomes very flat (due to aspect="equal", this might happen).
If you want to handle such cases, you can either
Adjust the figure size to the aspect of your grid, e.g.
fig = figure(figsize=grid.shape[1]*1.5/dpi, grid.shape[0]/dpi)
Read the coordinates of ax1 AFTER plotting, create ax2 just after that with the appropriately transformed coordinates and then use ax2 for the colorbar. This doesn't behave nicely when you resize the window, but might work out if you just create plots as image files automatically.
If 2. is what you need, I can add an example for this, but I will only do this work if you are sure this is what you want.
Greetings,
Thorsten

Related

Pyplot axis limits within boundaries

Is there an easy way to avoid pyplot zooming far into noisy data?
Something like a lower boundary for the axis limits.
I am not trying to set a fix boundary to my axis, as this will fully disable automatic scaling.
Maybe a "minimum tick distance" would also work.
Right now I am using an additional 'invisible' plot in my graph that will define the maximum zoom.
Some example that illustrates what I want to achieve:
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0, 100, 1)
noise = np.random.randn(len(x))*0.1
y = 10+noise
y_dummy_low = [0]*len(x)
y_dummy_high = [20]*len(x)
plt.figure()
plt.plot(x, y) # noise data i actually want to plot
plt.plot(x, y_dummy_low, y_dummy_high, marker="None", linestyle="None") # this will avoid zooming too much
plt.show()
Zooming too far
Zooming OK

matplotlib add artist not showing labels on legend

this is my first question here and one probably very simple, however I tried to fix any mistake and look more info but with no success, I am new to programming graphs using matplotlib, could anyone help me out? thank you in advance
The goal of the program was to graphic a circle and a label, but label was not appearing:
import matplotlib.pyplot as plt
circle1 = plt.Circle((0, 0), 0.2, color='r',label='Men')
fig, ax = plt.subplots()
ax.add_artist(circle1)
circle1 = plt.Circle((0, 0), 2, color='r',label='Men')
plt.legend(loc='best')
plt.show()
Based on your code, you are only plotting the first circle (with radius 0.2). You never call the second circle, so it does not show up. Not sure what you are going for here. However, BigBen is correct, just use ax.add_patch(circle1) instead and it will show with the labels. With this minor change, your plot will look like this:
You would also want to set x and y axis limits in order to see the entire circle. This code below will allow you to see both circles in full with different labels.
import matplotlib.pyplot as plt
circle1 = plt.Circle((0, 0), 0.2, color='r',label='Small Red',zorder=2)
circle2 = plt.Circle((0, 0), 2, color='b',label='Big Blue',zorder=1)
fig, ax = plt.subplots()
ax.add_patch(circle1)
ax.add_patch(circle2)
plt.legend(loc='best')
ax.set_xlim([-3,3])
ax.set_ylim([-3,3])
plt.show()
And your plot will look like this:
The zorder argument will decide which object shows up in front of the other. They will appear front-to-back in descending order.

changing the size of subplots with matplotlib

I am trying to plot multiple rgb images with matplotlib
the code I am using is:
import numpy as np
import matplotlib.pyplot as plt
for i in range(0, images):
test = np.random.rand(1080, 720,3)
plt.subplot(images,2,i+1)
plt.imshow(test, interpolation='none')
the subplots appear tiny though as thumbnails
How can I make them bigger?
I have seen solutions using
fig, ax = plt.subplots()
syntax before but not with plt.subplot ?
plt.subplots initiates a subplot grid, while plt.subplot adds a subplot. So the difference is whether you want to initiate you plot right away or fill it over time. Since it seems, that you know how many images to plot beforehand, I would also recommend going with subplots.
Also notice, that the way you use plt.subplot you generate empy subplots in between the ones you are actually using, which is another reason they are so small.
import numpy as np
import matplotlib.pyplot as plt
images = 4
fig, axes = plt.subplots(images, 1, # Puts subplots in the axes variable
figsize=(4, 10), # Use figsize to set the size of the whole plot
dpi=200, # Further refine size with dpi setting
tight_layout=True) # Makes enough room between plots for labels
for i, ax in enumerate(axes):
y = np.random.randn(512, 512)
ax.imshow(y)
ax.set_title(str(i), fontweight='bold')

How to overlay one pyplot figure on another

Searching easily reveals how to plot multiple charts on one figure, whether using the same plotting axes, a second y axis or subplots. Much harder to uncover is how to overlay one figure onto another, something like this:
That image was prepared using a bitmap editor to overlay the images. I have no difficulty creating the individual plots, but cannot figure out how to combine them. I expect a single line of code will suffice, but what is it? Here is how I imagine it:
bigFig = plt.figure(1, figsize=[5,25])
...
ltlFig = plt.figure(2)
...
bigFig.overlay(ltlFig, pos=[x,y], size=[1,1])
I've established that I can use figure.add_axes, but it is quite challenging getting the position of the overlaid plot correct, since the parameters are fractions, not x,y values from the first plot. It also [it seems to me - am I wrong?] places constraints on the order in which the charts are plotted, since the main plot must be completed before the other plots are added in turn.
What is the pyplot method that achieves this?
To create an inset axes you may use mpl_toolkits.axes_grid1.inset_locator.inset_axes.
Position of inset axes in axes coordinates
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
fig, ax= plt.subplots()
inset_axes = inset_axes(ax,
width=1, # inch
height=1, # inch
bbox_transform=ax.transAxes, # relative axes coordinates
bbox_to_anchor=(0.5,0.5), # relative axes coordinates
loc=3) # loc=lower left corner
ax.axis([0,500,-.1,.1])
plt.show()
Position of inset axes in data coordinates
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
fig, ax= plt.subplots()
inset_axes = inset_axes(ax,
width=1, # inch
height=1, # inch
bbox_transform=ax.transData, # data coordinates
bbox_to_anchor=(250,0.0), # data coordinates
loc=3) # loc=lower left corner
ax.axis([0,500,-.1,.1])
plt.show()
Both of the above produce the same plot
(For a possible drawback of this solution see specific location for inset axes)

Colorbar frame and color not aligned

I have a vexing issue with a colorbar and even after vigorous research I cannot find the question even being asked. I have a plot where I overlay a contour and a pcolormesh and I would like a colorbar to indicate values. That works fine except for one thing:
The colorbar frame and color are offset
The colorbar frame and the actual bar are offset such that below you have a white bit in the frame and on top the color is poking out. While the frame is aligned with the axis as desired, the colorbar is offset.
Here is a working example that emulates the situation I was in, i.e. multiple plots with insets.
import matplotlib.gridspec as gridspec
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
figheight = 4.2 - (2.1 - 49.519 / 25.4)
matplotlib.rcParams['figure.figsize'] = (5.25, figheight)
matplotlib.rcParams['axes.linewidth'] = 0.5
fig = plt.figure()
grid = gridspec.GridSpec(2, 1, height_ratios=[49.519 / 25.4 / figheight, 2.1 / figheight])
ax0 = plt.subplot(grid[0, 0])
ax1 = plt.subplot(grid[1, 0])
plt.tight_layout()
###############################################################################################
#
# Define position of inset
#
###############################################################################################
ax1.axis('off')
pos1 = ax1.get_position()
pos2 = matplotlib.transforms.Bbox([[pos1.x0, pos1.y0],
[.8*pos1.x1,
0.8*pos1.height + pos1.y0]])
left, bottom, width, height = [pos2.x0, pos2.y0, pos2.width, pos2.height]
ax2 = fig.add_axes([left, bottom, width, height])
###############################################################################################
#
# ax2 (inset) plot
#
###############################################################################################
pos2 = ax2.get_position()
ax2.axis('on')
x = np.linspace(0,5)
z = (np.outer(np.sin(x), np.cos(x))+1)*0.5
im = ax2.pcolormesh(z)
c = ax2.contour(z, linewidths=7)
ax2pos = ax2.get_position()
cbar_axis = fig.add_axes([ax2pos.x1+0.05,ax2pos.y0, .02, ax2pos.height])
colorbar = fig.colorbar(im, ax = ax2,
cax = cbar_axis, ticks = [0.1, .5, .9])
colorbar.outline.set_visible(True)
plot = 'Minimal.pdf'
fig.savefig(plot)
plt.close()
The problem persists in both the inline display and the saved .pdf if 'Inline' graphics backend is chosen. Using tight layout or not changes how badly the offset is depending on the size of the bar - same with using PyQT5 rather than inline graphics backend. I thought it was gone when I was changing between the various combinations, but I just realized it's still there.
I would appreciate any input.
As suggested by ImportanceOfBeingErnest I have tried using np.round on the figsize and that didn't change things. While you can fiddle around with sizes to make it look okay, it always stands over on one or the other side by some amount. When I change the graphics backend on Spyder 3 from 'Inline' to 'QT5' the problem becomes less severe with or without rounding. A summary of this is in this picture Colorbar overlap cases. Note that with not rounded and PyQT5 the problem still occurs, but is not as severe.
On inspection, it is clear that the colorbar is not only bleeding out over the top of its axes, but it's also positioned slightly to the left.
So, the problem here appears to be a conflict between the position of the colorbar axis and the colorbar itself when rasterization occurs. You can find more details on this issue in matplotlib's github repository, but I'll summarize what's going on here.
Colorbars are rasterized when the output is produced, so as to avoid artifacting issues during rendering. The position of the colorbar is snapped to the nearest integer pixels during the rasterization process, while the axis is kept where it is supposed to be. Then, when the output is produced, the colorbar falls within borders of fixed pixels of the image, despite the fact that the image is, itself, vectorized. Thus, there are two strategies that can be employed to avoid this mishap.
Use a finer DPI
The conversion from vectorized coordinates to rasterized coordinates takes place assuming a given DPI on the image. By default, this is set to be 72. However, by using more DPI, the overall shift induced by the rasterization process will be smaller, as the closest pixel the colorbar will snap to will be much nearer. Here, we change the output to have fig.savefig(plot,dpi=4000), and the problem goes away:
Note, however, that on my machine, the output size changed from 62 KB to 78 KB due to this change (although the DPI adjustment was also, admittedly, extreme). If you are worried about file sizes, you should pick a lower DPI that fixes the problem.
Use a different colormap
This rasterization happens when more than 50 colors are in the colorbar. Thus, we can do a quick test, setting our colormap to Pastel1 via
im = ax2.pcolormesh(z,cmap='Pastel1'). Here, the colorbar / axis mismatch is mitigated.
As a fallback, adopting a colorbar with fewer than 50 colors should mitigate this problem.
Rasterize the Axis
For completeness, there is also a third option. If you rasterize the colorbar axis, both the axis boundaries and the colormap will be rasterized, and you'll lose the offset. This will also rasterize your labels, and the axis will shift as one, breaking alignment with the nearby axis. For this, you just need to include cbar_axis.set_rasterized(True).
First, a way to overlay a contour and a pcolormesh and create a colorbar would be the following
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
import numpy as np
x = np.linspace(0,5)
z = (np.outer(np.sin(x), np.cos(x))+1)*0.5
fig = plt.figure(figsize=(4, 4))
ax = fig.add_subplot(111)
im = ax.pcolormesh(z)
c = ax.contour(z, linewidths=7)
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", "5%", pad="3%")
colorbar = fig.colorbar(im, cax=cax, ticks = [0.1, .5, .9])
plt.show()
Now to the problem from the question. It is of course possible to create the axes to put the colorbar in manually. Replacing the colorbar creation with the code from the question still produces a nice image.
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0,5)
z = (np.outer(np.sin(x), np.cos(x))+1)*0.5
fig = plt.figure(figsize=(4, 4))
ax = fig.add_subplot(111)
plt.subplots_adjust(right=0.8)
im = ax.pcolormesh(z)
c = ax.contour(z, linewidths=7)
ax2pos = ax.get_position()
cbar_axis = fig.add_axes([ax2pos.x1+0.05,ax2pos.y0, .05, ax2pos.height])
colorbar = fig.colorbar(im, ax = ax,
cax = cbar_axis, ticks = [0.1, .5, .9])
colorbar.outline.set_visible(True)
plt.show()
Conclusion so far: The issue is not reproducible, at least not without a Minimal, Complete, and Verifiable example.
I'm uncertain about the reasons for the behaviour in the example from the question. However, it seems that it can be overcome by rounding the figure size to 3 significant digits
matplotlib.rcParams['figure.figsize'] = (5.25, np.round(figheight,3))