How to use FasterRCNN Openimages v4? - tensorflow

I can't seem to find any documentation on how to use this model.
I am trying to use it to print out the objects that appear in a video
any help would be greatly appreciated
I am just starting out so go easy on me

I am trying to use it to print out the objects that appear in a video
I interpret that your problem is to print out the name of the found objects.
I don't know how you implemented where you got Fast RCNN trained on OpenImages v4. Therefore, I will give you the way with the model from Tensorflow Hub. Google Colab. AI Hub

After some digging around and a LOT of trial and error I came up with this
#!/home/ahmed/anaconda3/envs/TensorFlow/bin/python3.8
import tensorflow as tf
import tensorflow_hub as hub
import time,imageio,sys,pickle
# sys.argv[1] is used for taking the video path from the terminal
video = sys.argv[1]
#passing the video file to ImageIO to be read later in form of frames
video = imageio.get_reader(video)
dictionary = {}
#download and extract the model( faster_rcnn/openimages_v4/inception_resnet_v2 or
# openimages_v4/ssd/mobilenet_v2) in the same folder
module_handle = "*Path to the model folder*"
detector = hub.load(module_handle).signatures['default']
#looping over every frame in the video
for index, frames in enumerate(video):
# converting the images ( video frames ) to tf.float32 which is the only acceptable input format
image = tf.image.convert_image_dtype(frames, tf.float32)[tf.newaxis]
# passing the converted image to the model
detector_output = detector(image)
class_names = detector_output["detection_class_entities"]
scores = detector_output["detection_scores"]
# in case there are multiple objects in the frame
for i in range(len(scores)):
if scores[i] > 0.3:
#converting form bytes to string
object = class_names[i].numpy().decode("ascii")
#adding the objects that appear in the frames in a dictionary and their frame numbers
if object not in dictionary:
dictionary[object] = [index]
else:
dictionary[object].append(index)
print(dictionary)

Related

Streamlit with Tensorflow to analyse image and return the probability if is positive or negative

I'm trying to use Tensorflow to Machine Learning to analyze an image and return the probability if is positive or negative based on a model created (extension .h5). I couldn't found a documentation exactly for that, or repository, so even a link to read will be awesome.
Link for the application: https://share.streamlit.io/felipelx/hackathon/IDC_Detector.py
Libraries that I'm trying to use.
import numpy as np
import streamlit as st
import tensorflow as tf
from keras.models import load_model
The function to load the model.
#st.cache(allow_output_mutation=True)
def loadIDCModel():
model_idc = load_model('models/IDC_model.h5', compile=False)
model_idc.summary()
return model_idc
The function to work the image, and what I'm trying to see: model.predict - I can see but is not updating the %, independent of the image the value is always the same.
if uploaded_file is not None:
# transform image to numpy array
file_bytes = tf.keras.preprocessing.image.load_img(uploaded_file, target_size=(96,96), grayscale = False, interpolation = 'nearest', color_mode = 'rgb', keep_aspect_ratio = False)
c.image(file_bytes, channels="RGB")
Genrate_pred = st.button("Generate Prediction")
if Genrate_pred:
model = loadMetModel()
input_arr = tf.keras.preprocessing.image.img_to_array(file_bytes)
input_arr = np.array([input_arr])
probability_model = tf.keras.Sequential([model, tf.keras.layers.Softmax()])
prediction = probability_model.predict(input_arr)
dict_pred = {0: 'Benigno/Normal', 1: 'Maligno'}
result = dict_pred[np.argmax(prediction)]
value = 0
if result == 'Benigno/Normal':
value = str(((prediction[0][0])*100).round(2)) + '%'
else:
value = str(((prediction[0][1])*100).round(2)) + '%'
c.metric('Predição', result, delta=value, delta_color='normal')
Thank you in advance to any help.
The first thing I'm noticing is that your function for loading the model is named loadIDCModel, but then the function you call for loading the model is loadMetModel. When I check your source code, though, it looks like you've already addressed this issue. I'd recommend updating your question to reflect this.
Playing around with your application, I think the issue is your model itself. I tried various images — images containing carcinomas, and even a picture of a cat — and each gave me a probability around 73%. The lowest score I got was 72.74%, and the highest was 73.11% (this one was the cat). It seems that the output percentage is varying slightly, hinting that rather than something being wrong in the code, your model itself is likely at fault. You might need to retrain your model, as it seems to have learned to always return a value of approximately 0.73.

How to save an image that has been visualized/generated by a Keras model?

I am using detecto model to visualize an image. So basically I am passing an image to this model and it will draw a boundary line accross the object and dislay the visualized image.
from keras.preprocessing.image import load_img
from keras.preprocessing.image import save_img
from keras.preprocessing.image import img_to_array
from detecto import core, utils, visualize
image = utils.read_image('retina_model/4.jpg')
model = core.Model()
labels, boxes, scores = model.predict_top(image)
img=visualize.show_labeled_image(image, boxes,)
Now, I am trying to convert this visualized image into Numpy array. I am using the below line for converting the image into numpy array :
img_array = img_to_array(img)
It is giving the errror :
Unsupported Image Shape
All I want is to display the visualized image which is the output of this model to my website. The plan is to convert the image into numpy array and then save the image by code using the below line :
save_img('image1.jpg', img_array)
So I was planning to download this visualized image (output of this model) so that I can display the downloaded image to my website. If there is some other way to do achieve this then please let me know.
Detecto's documentation says the utils.read_image() is already returning a NumPy array.
But you are passing the return of visualize.show_labeled_image() to Keras' img_to_array(img)
Looking at the Detecto source code of visualize.show_labeled_image(), it has no return type, so it is returning None by default. So I think your problem is you are not passing a valid image to img_to_array(img), but None.
I don't think the call to img_to_array(img) is needed, because you already have the image as a NumPy array. But note that according to Detecto's documentation, utils.read_image() is "Equivalent to using OpenCV’s cv2.imread function and converting from BGR to RGB format" . Make sure that's what you want.
you can visit the official github repo of detecto/visualize.pyto find out the show_labeled_image() function it uses matplotlib to plot the image with bounding boxes you can modify that code in your file to save the plot using plt.save_fig()

How to convert a HyperSpectral image or an image with many bands in TFRecord format?

I've been trying to use a hyperspectral image dataset that was in .mat files. I found that using the scipy library with its loadmat function I can load the hyperspectral images and selecting some bands to see them as an RGB.
def RGBread(image):
images = loadmat(image).get('new_image')
return abs(images[:,:,(12,6,4)])
def SIread(image):
images = loadmat(image).get('new_image')
return abs(images[:,:,:])
After trying to implement the pix2pix architecture I found an unexpected error. When passing the list of the names of the dataset files by a function that is responsible for load the data(which are still .mat files), Tensor Flow does not have a direct method for this reading or coding, so I get these data with my RGBread and SIread method and then I turned them into tensors.
def load_image(filename, augment=True):
inimg = tf.cast( tf.convert_to_tensor(RGBread(ImagePATH+'/'+filename)
,dtype=tf.float32),tf.float32)[...,:3]
tgimg = tf.cast( tf.convert_to_tensor(SIread(ImagePATH+'/'+filename)
,dtype=tf.float32),tf.float32)[...,:12]
inimg, tgimg = resize(inimg, tgimg,IMG_HEIGH,IMG_WIDTH)
if augment:
inimg, tgimg = random_jitter(inimg, tgimg)
return inimg, tgimg
When loading an image with the load_image method, using the name and path of a single .mat file (a hyperspectral image) of my dataset as argument of my function the method worked perfectly.
plt.imshow(load_train_image(tr_urls[1])[0])
The problem started when I created my dataSet tensor, because my RGBread function does not receive a tensor as a parameter since loadmat('.mat') expects a string. Having the following error.
train_dataset = tf.data.Dataset.from_tensor_slices(tr_urls)
train_dataset = train_dataset.map(load_train_image,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
TypeError: expected str, bytes or os.PathLike object, not Tensor
After reading a lot about reading .mat files I found a user who recommended passing the data to TFrecord format. I've been trying to do it but I couldn't. Someone could help me?
Rasterio may be useful here.
https://rasterio.readthedocs.io/en/latest/
It can read hyperspectral .tif which can be passed to tf.data using a tf.keras data-generator. It may be a bit slow and perhaps should be done before training rather than at runtime.
An alternative is to ask whether you need the geotiff metadata. If not, you can preprocess and save as numpy arrays for tfrecords.

Tensorflow: Load unknown TFRecord dataset

I got a TFRecord data file filename = train-00000-of-00001 which contains images of unknown size and maybe other information as well. I know that I can use dataset = tf.data.TFRecordDataset(filename) to open the dataset.
How can I extract the images from this file to save it as a numpy-array?
I also don't know if there is any other information saved in the TFRecord file such as labels or resolution. How can I get these information? How can I save them as a numpy-array?
I normally only use numpy-arrays and am not familiar with TFRecord data files.
1.) How can I extract the images from this file to save it as a numpy-array?
What you are looking for is this:
record_iterator = tf.python_io.tf_record_iterator(path=filename)
for string_record in record_iterator:
example = tf.train.Example()
example.ParseFromString(string_record)
print(example)
# Exit after 1 iteration as this is purely demonstrative.
break
2.) How can I get these information?
Here is the official documentation. I strongly suggest that you read the documentation because it goes step by step in how to extract the values that you are looking for.
Essentially, you have to convert example to a dictionary. So if I wanted to find out what kind of information is in a tfrecord file, I would do something like this (in context with the code stated in the first question): dict(example.features.feature).keys()
3.) How can I save them as a numpy-array?
I would build upon the for loop mentioned above. So for every loop, it extracts the values that you are interested in and appends them to numpy arrays. If you want, you could create a pandas dataframe from those arrays and save it as a csv file.
But...
You seem to have multiple tfrecord files...tf.data.TFRecordDataset(filename) returns a dataset that is used to train models.
So in the event for multiple tfrecords, you would need a double for loop. The outer loop will go through each file. For that particular file, the inner loop will go through all of the tf.examples.
EDIT:
Converting to np.array()
import tensorflow as tf
from PIL import Image
import io
for string_record in record_iterator:
example = tf.train.Example()
example.ParseFromString(string_record)
print(example)
# Get the values in a dictionary
example_bytes = dict(example.features.feature)['image_raw'].bytes_list.value[0]
image_array = np.array(Image.open(io.BytesIO(example_bytes)))
print(image_array)
break
Sources for the code above:
Base code
Converting bytes to PIL.JpegImagePlugin.JpegImageFile
Converting from PIL.JpegImagePlugin.JpegImageFile to np.array
Official Documentation for PIL
EDIT 2:
import tensorflow as tf
from PIL import Image
import io
import numpy as np
# Load image
cat_in_snow = tf.keras.utils.get_file(path, 'https://storage.googleapis.com/download.tensorflow.org/example_images/320px-Felis_catus-cat_on_snow.jpg')
#------------------------------------------------------Convert to tfrecords
def _bytes_feature(value):
"""Returns a bytes_list from a string / byte."""
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def image_example(image_string):
feature = {
'image_raw': _bytes_feature(image_string),
}
return tf.train.Example(features=tf.train.Features(feature=feature))
with tf.python_io.TFRecordWriter('images.tfrecords') as writer:
image_string = open(cat_in_snow, 'rb').read()
tf_example = image_example(image_string)
writer.write(tf_example.SerializeToString())
#------------------------------------------------------
#------------------------------------------------------Begin Operation
record_iterator = tf.python_io.tf_record_iterator(path to tfrecord file)
for string_record in record_iterator:
example = tf.train.Example()
example.ParseFromString(string_record)
print(example)
# OPTION 1: convert bytes to arrays using PIL and IO
example_bytes = dict(example.features.feature)['image_raw'].bytes_list.value[0]
PIL_array = np.array(Image.open(io.BytesIO(example_bytes)))
# OPTION 2: convert bytes to arrays using Tensorflow
with tf.Session() as sess:
TF_array = sess.run(tf.image.decode_jpeg(example_bytes, channels=3))
break
#------------------------------------------------------
#------------------------------------------------------Compare results
(PIL_array.flatten() != TF_array.flatten()).sum()
PIL_array == TF_array
PIL_img = Image.fromarray(PIL_array, 'RGB')
PIL_img.save('PIL_IMAGE.jpg')
TF_img = Image.fromarray(TF_array, 'RGB')
TF_img.save('TF_IMAGE.jpg')
#------------------------------------------------------
Remember that tfrecords is just simply a way of storing information for tensorflow models to read in an efficient manner.
I use PIL and IO to essentially convert the bytes to an image. IO takes the bytes and converts them to a file like object that PIL.Image can then read
Yes, there is a pure tensorflow way to do it: tf.image.decode_jpeg
Yes, there is a difference between the two approaches when you compare the two arrays
Which one should you pick? Tensorflow is not the way to go if you are worried about accuracy as stated in Tensorflow's github : "The TensorFlow-chosen default for jpeg decoding is IFAST, sacrificing image quality for speed". Credit for this information belongs to this post

How to get chosen class images from Imagenet?

Background
I have been playing around with Deep Dream and Inceptionism, using the Caffe framework to visualize layers of GoogLeNet, an architecture built for the Imagenet project, a large visual database designed for use in visual object recognition.
You can find Imagenet here: Imagenet 1000 Classes.
To probe into the architecture and generate 'dreams', I am using three notebooks:
https://github.com/google/deepdream/blob/master/dream.ipynb
https://github.com/kylemcdonald/deepdream/blob/master/dream.ipynb
https://github.com/auduno/deepdraw/blob/master/deepdraw.ipynb
The basic idea here is to extract some features from each channel in a specified layer from the model or a 'guide' image.
Then we input an image we wish to modify into the model and extract the features in the same layer specified (for each octave),
enhancing the best matching features, i.e., the largest dot product of the two feature vectors.
So far I've managed to modify input images and control dreams using the following approaches:
(a) applying layers as 'end' objectives for the input image optimization. (see Feature Visualization)
(b) using a second image to guide de optimization objective on the input image.
(c) visualize Googlenet model classes generated from noise.
However, the effect I want to achieve sits in-between these techniques, of which I haven't found any documentation, paper, or code.
Desired result (not part of the question to be answered)
To have one single class or unit belonging to a given 'end' layer (a) guide the optimization objective (b) and have this class visualized (c) on the input image:
An example where class = 'face' and input_image = 'clouds.jpg':
please note: the image above was generated using a model for face recognition, which was not trained on the Imagenet dataset. For demonstration purposes only.
Working code
Approach (a)
from cStringIO import StringIO
import numpy as np
import scipy.ndimage as nd
import PIL.Image
from IPython.display import clear_output, Image, display
from google.protobuf import text_format
import matplotlib as plt
import caffe
model_name = 'GoogLeNet'
model_path = 'models/dream/bvlc_googlenet/' # substitute your path here
net_fn = model_path + 'deploy.prototxt'
param_fn = model_path + 'bvlc_googlenet.caffemodel'
model = caffe.io.caffe_pb2.NetParameter()
text_format.Merge(open(net_fn).read(), model)
model.force_backward = True
open('models/dream/bvlc_googlenet/tmp.prototxt', 'w').write(str(model))
net = caffe.Classifier('models/dream/bvlc_googlenet/tmp.prototxt', param_fn,
mean = np.float32([104.0, 116.0, 122.0]), # ImageNet mean, training set dependent
channel_swap = (2,1,0)) # the reference model has channels in BGR order instead of RGB
def showarray(a, fmt='jpeg'):
a = np.uint8(np.clip(a, 0, 255))
f = StringIO()
PIL.Image.fromarray(a).save(f, fmt)
display(Image(data=f.getvalue()))
# a couple of utility functions for converting to and from Caffe's input image layout
def preprocess(net, img):
return np.float32(np.rollaxis(img, 2)[::-1]) - net.transformer.mean['data']
def deprocess(net, img):
return np.dstack((img + net.transformer.mean['data'])[::-1])
def objective_L2(dst):
dst.diff[:] = dst.data
def make_step(net, step_size=1.5, end='inception_4c/output',
jitter=32, clip=True, objective=objective_L2):
'''Basic gradient ascent step.'''
src = net.blobs['data'] # input image is stored in Net's 'data' blob
dst = net.blobs[end]
ox, oy = np.random.randint(-jitter, jitter+1, 2)
src.data[0] = np.roll(np.roll(src.data[0], ox, -1), oy, -2) # apply jitter shift
net.forward(end=end)
objective(dst) # specify the optimization objective
net.backward(start=end)
g = src.diff[0]
# apply normalized ascent step to the input image
src.data[:] += step_size/np.abs(g).mean() * g
src.data[0] = np.roll(np.roll(src.data[0], -ox, -1), -oy, -2) # unshift image
if clip:
bias = net.transformer.mean['data']
src.data[:] = np.clip(src.data, -bias, 255-bias)
def deepdream(net, base_img, iter_n=20, octave_n=4, octave_scale=1.4,
end='inception_4c/output', clip=True, **step_params):
# prepare base images for all octaves
octaves = [preprocess(net, base_img)]
for i in xrange(octave_n-1):
octaves.append(nd.zoom(octaves[-1], (1, 1.0/octave_scale,1.0/octave_scale), order=1))
src = net.blobs['data']
detail = np.zeros_like(octaves[-1]) # allocate image for network-produced details
for octave, octave_base in enumerate(octaves[::-1]):
h, w = octave_base.shape[-2:]
if octave > 0:
# upscale details from the previous octave
h1, w1 = detail.shape[-2:]
detail = nd.zoom(detail, (1, 1.0*h/h1,1.0*w/w1), order=1)
src.reshape(1,3,h,w) # resize the network's input image size
src.data[0] = octave_base+detail
for i in xrange(iter_n):
make_step(net, end=end, clip=clip, **step_params)
# visualization
vis = deprocess(net, src.data[0])
if not clip: # adjust image contrast if clipping is disabled
vis = vis*(255.0/np.percentile(vis, 99.98))
showarray(vis)
print octave, i, end, vis.shape
clear_output(wait=True)
# extract details produced on the current octave
detail = src.data[0]-octave_base
# returning the resulting image
return deprocess(net, src.data[0])
I run the code above with:
end = 'inception_4c/output'
img = np.float32(PIL.Image.open('clouds.jpg'))
_=deepdream(net, img)
Approach (b)
"""
Use one single image to guide
the optimization process.
This affects the style of generated images
without using a different training set.
"""
def dream_control_by_image(optimization_objective, end):
# this image will shape input img
guide = np.float32(PIL.Image.open(optimization_objective))
showarray(guide)
h, w = guide.shape[:2]
src, dst = net.blobs['data'], net.blobs[end]
src.reshape(1,3,h,w)
src.data[0] = preprocess(net, guide)
net.forward(end=end)
guide_features = dst.data[0].copy()
def objective_guide(dst):
x = dst.data[0].copy()
y = guide_features
ch = x.shape[0]
x = x.reshape(ch,-1)
y = y.reshape(ch,-1)
A = x.T.dot(y) # compute the matrix of dot-products with guide features
dst.diff[0].reshape(ch,-1)[:] = y[:,A.argmax(1)] # select ones that match best
_=deepdream(net, img, end=end, objective=objective_guide)
and I run the code above with:
end = 'inception_4c/output'
# image to be modified
img = np.float32(PIL.Image.open('img/clouds.jpg'))
guide_image = 'img/guide.jpg'
dream_control_by_image(guide_image, end)
Question
Now the failed approach how I tried to access individual classes, hot encoding the matrix of classes and focusing on one (so far to no avail):
def objective_class(dst, class=50):
# according to imagenet classes
#50: 'American alligator, Alligator mississipiensis',
one_hot = np.zeros_like(dst.data)
one_hot.flat[class] = 1.
dst.diff[:] = one_hot.flat[class]
To make this clear: the question is not about the dream code, which is the interesting background and which is already working code, but it is about this last paragraph's question only: Could someone please guide me on how to get images of a chosen class (take class #50: 'American alligator, Alligator mississipiensis') from ImageNet (so that I can use them as input - together with the cloud image - to create a dream image)?
The question is how to get images of the chosen class #50: 'American alligator, Alligator mississipiensis' from ImageNet.
Go to image-net.org.
Go to "Download".
Follow the instructions for "Download Image URLs":
How to download the URLs of a synset from your Brower?
1. Type a query in the Search box and click "Search" button
The alligator is not shown. ImageNet is under maintenance. Only ILSVRC synsets are included in the search results. No problem, we are fine with the similar animal "alligator lizard", since this search is about getting to the right branch of the WordNet treemap. I do not know whether you will get the direct ImageNet images here even if there were no maintenance.
2. Open a synset papge
Scrolling down:
Scrolling down:
Searching for the American alligator, which happens to be a saurian diapsid reptile as well, as a near neighbour:
3. You will find the "Download URLs" button under the left-bottom corner of the image browsing window.
You will get all of the URLs with the chosen class. A text file pops up in the browser:
http://image-net.org/api/text/imagenet.synset.geturls?wnid=n01698640
We see here that it is just about knowing the right WordNet id that needs to be put at the end of the URL.
Manual image download
The text file looks as follows:
http://farm1.static.flickr.com/136/326907154_d975d0c944.jpg
http://weeksbay.org/photo_gallery/reptiles/American20Alligator.jpg
...
till image number 1261.
As an example, the first URL links to:
And the second is a dead link:
The third link is dead, but the fourth is working.
The images of these URLs are publicly available, but many links are dead, and the pictures are of lower resolution.
Automated image download
From the ImageNet guide again:
How to download by HTTP protocol? To download a synset by HTTP
request, you need to obtain the "WordNet ID" (wnid) of a synset first.
When you use the explorer to browse a synset, you can find the WordNet
ID below the image window.(Click Here and search "Synset WordNet ID"
to find out the wnid of "Dog, domestic dog, Canis familiaris" synset).
To learn more about the "WordNet ID", please refer to
Mapping between ImageNet and WordNet
Given the wnid of a synset, the URLs of its images can be obtained at
http://www.image-net.org/api/text/imagenet.synset.geturls?wnid=[wnid]
You can also get the hyponym synsets given wnid, please refer to API
documentation to learn more.
So what is in that API documentation?
There is everything needed to get all of the WordNet IDs (so called "synset IDs") and their words for all synsets, that is, it has any class name and its WordNet ID at hand, for free.
Obtain the words of a synset
Given the wnid of a synset, the words of
the synset can be obtained at
http://www.image-net.org/api/text/wordnet.synset.getwords?wnid=[wnid]
You can also Click Here to
download the mapping between WordNet ID and words for all synsets,
Click Here to download the
mapping between WordNet ID and glosses for all synsets.
If you know the WordNet ids of choice and their class names, you can use the nltk.corpus.wordnet of "nltk" (natural language toolkit), see the WordNet interface.
In our case, we just need the images of class #50: 'American alligator, Alligator mississipiensis', we already know what we need, thus we can leave the nltk.corpus.wordnet aside (see tutorials or Stack Exchange questions for more). We can automate the download of all alligator images by looping through the URLs that are still alive. We could also widen this to the full WordNet with a loop over all WordNet IDs, of course, though this would take far too much time for the whole treemap - and is also not recommended since the images will stop being there if 1000s of people download them daily.
I am afraid I will not take the time to write this Python code that accepts the ImageNet class number "#50" as the argument, though that should be possible as well, using mapping tables from WordNet to ImageNet. Class name and WordNet ID should be enough.
For a single WordNet ID, the code could be as follows:
import urllib.request
import csv
wnid = "n01698640"
url = "http://image-net.org/api/text/imagenet.synset.geturls?wnid=" + str(wnid)
# From https://stackoverflow.com/a/45358832/6064933
req = urllib.request.Request(url, headers={'User-Agent': 'Mozilla/5.0'})
with open(wnid + ".csv", "wb") as f:
with urllib.request.urlopen(req) as r:
f.write(r.read())
with open(wnid + ".csv", "r") as f:
counter = 1
for line in f.readlines():
print(line.strip("\n"))
failed = []
try:
with urllib.request.urlopen(line) as r2:
with open(f'''{wnid}_{counter:05}.jpg''', "wb") as f2:
f2.write(r2.read())
except:
failed.append(f'''{counter:05}, {line}'''.strip("\n"))
counter += 1
if counter == 10:
break
with open(wnid + "_failed.csv", "w", newline="") as f3:
writer = csv.writer(f3)
writer.writerow(failed)
Result:
If you need the images even behind the dead links and in original quality, and if your project is non-commercial, you can sign in, see "How do I get a copy of the images?" at the Download FAQ.
In the URL above, you see the wnid=n01698640 at the end of the URL which is the WordNet id that is mapped to ImageNet.
Or in the "Images of the Synset" tab, just click on "Wordnet IDs".
To get to:
or right-click -- save as:
You can use the WordNet id to get the original images.
If you are commercial, I would say contact the ImageNet team.
Add-on
Taking up the idea of a comment: If you do not want many images, but just the "one single class image" that represents the class as much as possible, have a look at Visualizing GoogLeNet Classes and try to use this method with the images of ImageNet instead. Which is using the deepdream code as well.
Visualizing GoogLeNet Classes
July 2015
Ever wondered what a deep neural network thinks a Dalmatian should
look like? Well, wonder no more.
Recently Google published a post describing how they managed to use
deep neural networks to generate class visualizations and modify
images through the so called “inceptionism” method. They later
published the code to modify images via the inceptionism method
yourself, however, they didn’t publish code to generate the class
visualizations they show in the same post.
While I never figured out exactly how Google generated their class
visualizations, after butchering the deepdream code and this ipython
notebook from Kyle McDonald, I managed to coach GoogLeNet into drawing
these:
... [with many other example images to follow]