I am writing function in my cmake project that needs to make two targets from one, and alter slightly one of them:
option(BORG_STRIP_TEST_BINARIES OFF "Strip symbols from test binaries to reduce disk space usage" )
function(add_borg_test target)
add_test(${target} ${target} --gtest_color=yes)
if(BORG_STRIP_TEST_BINARIES)
# copy target, but make it optional
duplicate_target(FROM ${target} TO ${target}_debug )
set_target_properties(${target}_debug PROPERTIES EXCLUDE_FROM_ALL TRUE)
# alter
target_link_options(${target} PRIVATE -s)
endif()
endfunction()
So this is supposed to work like this:
I create binary target that uses gtest. Set up all target_link_libraries and everything. Example name example-utests
instead add generic add_test, I use custom add_borg_test
now example-utests links with flag -s and is included in all target.
example-utests_debug is NOT included in all target but when requested explicitly, it links without -s.
How to implement duplicate_target from above code snippet?
Related
I'm not familar with cmake but in CMakeLists.txt we set the target shared library name like this.
add_library( mylib SHARED ${source_list} )
This generates libmylib.so and other settings in CMakeLists.txt are defined for mylib like
about the mylib
and also we can use shell environment variable to do some selective settings like
target_compile_definitions( mylib PRIVATE -DQQQ -D... )
Also it is possible to use shell environment variable to do some selective things.
if(defined env{MYVAR})
set(CMAKE_C_FLAGS "-g -DXYZ")
else()
set(CMAKE_C_FLAGS "-DXYZ")
endif()
I would be happy if I could set the target shared library name as a variable according to the environment variable and use that selected name variable as the shared library name in all other settings. In other words, is it possible to do things like below?
if (defined ENV{FOR_QEMU})
set_name(target_name "simlib_qemu")
else ()
set_name(target_name "simlib")
endif ()
add_library(target_name SHARED ${source_list} )
target_compile_definitions( target_name PRIVATE -DQQQ -D... )
...
You can set the output name of a target to anything you like via:
set_target_properties(target_name PROPERTIES OUTPUT_NAME "whatever")
Then instead of libtarget_name.so, you'll get libwhatever.so. You would continue to refer to the target as target_name in your CMakeLists.txt.
However, since this will only work during configure time anyway, I strongly urge you to use a normal CMake variable instead. You may initialize it from the environment if it is not set, like so:
option(FOR_QEMU "Enable if building with Qemu support" "$ENV{FOR_QEMU}")
add_library(simlib SHARED ${source_list})
target_compile_definitions(simlib PRIVATE -DQQQ -D...)
if (FOR_QEMU)
set_target_properties(target_name PROPERTIES OUTPUT_NAME "simlib_qemu")
endif ()
This way, the CMake variable FOR_QEMU is the de-facto control and it is initialized on the first execution if the matching env-var is set. It will also appear with documentation in the cache, so other developers may query the build system directly for all its configuration points. Bear in mind: CMake is not Make and reading from the environment on every configure is a surprising behavior and generally bad practice.
I would like to create two separate executable from the same source files but with different linker parameters.
With the lines above, I can generate one executable without problem:
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} --specs=nano.specs -T libs.ld -T mem.ld -T sections.ld -L\"${CMAKE_CURRENT_SOURCE_DIR}/script\" -Wl,-Map,${MAP_NAME}")
add_executable(${ELF_NAME} ${PRJ1_SOURCE_FILES} ${PRJ1_HEADER_FILES})
target_link_libraries(${ELF_NAME} PRIVATE liba libb libc)
When I add the following two lines at the end of the code above, I can very well generate the second executable (with the same linker flags) besides the first one without problem:
add_executable(${ELF2_NAME} ${PRJ1_SOURCE_FILES} ${PRJ1_HEADER_FILES})
target_link_libraries(${ELF2_NAME} PRIVATE liba libb libc)
But my problem is that I have to generate the second executable (at the same time with the first one) with different linker parameters. I don't want to use conditional statements to generate one after another. My goal is to automate the process.
How can achieve this?
Use set_target_properties with LINK_FLAGS property. From set_target_properties manual:
set_target_properties(target1 target2 ...
PROPERTIES prop1 value1
prop2 value2 ...)
Set properties on a target.
...
See Properties on Targets for the list of properties known to CMake.
In the link properties on targets we can find LINK_FLAGS:
Additional flags to use when linking this target.
The LINK_FLAGS property can be used to add extra flags to the link step of a target. LINK_FLAGS_ will add to the configuration , for example, DEBUG, RELEASE, MINSIZEREL, RELWITHDEBINFO.
So use something similar to:
set_target_properties(${ELF_NAME} PROPERTIES LINK_FLAGS " --specs=rdimon.specs")
While Kamil answer is good for now, I believe question you're asking for is properly addressed in upcoming CMake v3.13.
target_link_options was introduced for that purpose,
"Specify link options to use when linking a given target. The named must have been created by a command such as add_executable() or add_library() and must not be an ALIAS target."
https://cmake.org/cmake/help/v3.13/command/target_link_options.html#command:target_link_options
I've been told it's bad practice to do things like seting CFLAGS directly in CMake, and that, instead, I should use the target_compile_definitions() command.
Ok, but - what if I want to use similar/identical definitions for multiple (independent) targets? I don't want to repeat myself over and over again.
I see three possible ways:
The preferred one using target_compile_definitions(... INTERFACE/PUBLIC ...) which would self-propagate the compiler definitions to targets depending on it via target_link_libraries() command.
Using the set_property(TARGET target1 target2 ... APPEND PROPERTY COMPILE_DEFINITIONS ...) to set the same definitions to multiple targets.
You may still use the "old commands" of add_definitions() and remove_definitions() to modify COMPILE_DEFINITIONS directory property (which would pre-set all COMPILE_DEFINITIONS target properties in this directories scope).
References
Is Cmake set variable recursive?
CMake: Is there a difference between set_property(TARGET ...) and set_target_properties?
tl;dr: You can iterate the targets in a loop.
If you have a bunch of targets with some common/similar features, you may want to simply manipulate them all in a loop! Remember - CMake is not like GNU Make, it's a full-fledged scripting language (well, sort of). So you could write:
set(my_targets
foo
bar
baz)
foreach(TARGET ${my_targets})
add_executable(${TARGET} "${TARGET}.cu")
target_compile_options(${TARGET} PRIVATE "--some_option=some_value")
target_link_libraries(${TARGET} PRIVATE some_lib)
# and so on
set_target_properties(
${TARGET}
PROPERTIES
C_STANDARD 99
C_STANDARD_REQUIRED YES
C_EXTENSIONS NO )
endforeach(TARGET)
And you could also initialize an empty list of targets, then add to it here-and-there, and only finally apply your common options and settings to all of them, centrally.
Note: In this example I added PRIVATE compile options, but if you need some of them to propagate to targets using your targets, you can make them PUBLIC).
another neat solution is to define an interface library target (a fake target that does not produce any binaries) with all required properties and compiler definitions, then link the other existing targets against it
example:
add_library(myfakelib INTERFACE)
target_compile_definitions(myfakelib INTERFACE MY_NEEDED_DEFINITION)
add_executable(actualtarget1 main1.cpp)
add_executable(actualtarget2 main2.cpp)
set_property(
TARGET actualtarget1 actualtarget2
APPEND PROPERTY LINK_LIBRARIES myfakelib
)
refs:
https://cmake.org/cmake/help/latest/command/add_library.html#interface-libraries
In CMake, the flags for the C++ compiler can be influenced in various ways: setting CMAKE_CXX_FLAGS manually, using add_definitions(), forcing a certain C++ standard, and so forth.
In order to compile a target in the same project with different rules (a precompiled header, in my case), I need to reproduce the exact command that is used to compile files added by a command like add_executable() in this directory.
Reading CMAKE_CXX_FLAGS only returns the value set to it explicitly, CMAKE_CXX_FLAGS_DEBUG and siblings only list default Debug/Release options. There is a special functions to retrieve the flags from add_definitions() and add_compiler_options(), but none seem to be able to return the final command line.
How can I get all flags passed to the compiler into a CMake variable?
To answer my own question: It seems like the only way of getting all compiler flags is to reconstruct them from the various sources. The code I'm working with now is the following (for GCC):
macro (GET_COMPILER_FLAGS TARGET VAR)
if (CMAKE_COMPILER_IS_GNUCXX)
set(COMPILER_FLAGS "")
# Get flags form add_definitions, re-escape quotes
get_target_property(TARGET_DEFS ${TARGET} COMPILE_DEFINITIONS)
get_directory_property(DIRECTORY_DEFS COMPILE_DEFINITIONS)
foreach (DEF ${TARGET_DEFS} ${DIRECTORY_DEFS})
if (DEF)
string(REPLACE "\"" "\\\"" DEF "${DEF}")
list(APPEND COMPILER_FLAGS "-D${DEF}")
endif ()
endforeach ()
# Get flags form include_directories()
get_target_property(TARGET_INCLUDEDIRS ${TARGET} INCLUDE_DIRECTORIES)
foreach (DIR ${TARGET_INCLUDEDIRS})
if (DIR)
list(APPEND COMPILER_FLAGS "-I${DIR}")
endif ()
endforeach ()
# Get build-type specific flags
string(TOUPPER ${CMAKE_BUILD_TYPE} BUILD_TYPE_SUFFIX)
separate_arguments(GLOBAL_FLAGS UNIX_COMMAND
"${CMAKE_CXX_FLAGS} ${CMAKE_CXX_FLAGS_${BUILD_TYPE_SUFFIX}}")
list(APPEND COMPILER_FLAGS ${GLOBAL_FLAGS})
# Add -std= flag if appropriate
get_target_property(STANDARD ${TARGET} CXX_STANDARD)
if ((NOT "${STANDARD}" STREQUAL NOTFOUND) AND (NOT "${STANDARD}" STREQUAL ""))
list(APPEND COMPILER_FLAGS "-std=gnu++${STANDARD}")
endif ()
endif ()
set(${VAR} "${COMPILER_FLAGS}")
endmacro ()
This could be extended to also include options induced by add_compiler_options() and more.
Easiest way is to use make VERBOSE=1 when compiling.
cd my-build-dir
cmake path-to-my-sources
make VERBOSE=1
This will do a single-threaded build, and make will print every shell command it runs just before it runs it. So you'll see output like:
[ 0%] Building CXX object Whatever.cpp.o
<huge scary build command it used to build Whatever.cpp>
There actually is a fairly clean way to do this at compile time using CXX_COMPILER_LAUNCHER:
If you have a script print_args.py
#!/usr/bin/env python
import sys
import argparse
print(" ".join(sys.argv[1:]))
# we need to produce an output file so that the link step does not fail
p = argparse.ArgumentParser()
p.add_argument("-o")
args, _ = p.parse_known_args()
with open(args.o, "w") as f:
f.write("")
You can set the target's properties as follows:
add_library(${TARGET_NAME} ${SOURCES})
set_target_properties(${TARGET_NAME} PROPERTIES
CXX_COMPILER_LAUNCHER
${CMAKE_CURRENT_SOURCE_DIR}/print_args.py
)
# this tells the linker to not actually link. Which would fail because output file is empty
set_target_properties(${TARGET_NAME} PROPERTIES
LINK_FLAGS
-E
)
This will print the exact compilation command at compile time.
Short answer
It's not possible to assign final value of compiler command line to variable in CMake script, working in all use cases.
Long answer
Unfortunately, even solution accepted as answer still not gets all compiler flags. As gets noted in comments, there are Transitive Usage Requirements. It's a modern and proper way to write CMake files, getting more and more popular. Also you may have some compile options defined using generator expressions (they look like variable references but will not expand when needed).
Consider having following example:
add_executable(myexe ...);
target_compile_definitions(myexe PRIVATE "PLATFORM_$<PLATFORM_ID>");
add_library(mylib ...);
target_compile_definitions(mylib INTERFACE USING_MY_LIB);
target_link_libraries(myexe PUBLIC mylib);
If you try to call proposed GET_COMPILER_FLAGS macro with myexe target, you will get resulting output -DPLATFORM_$<PLATFORM_ID> instead of expected -DPLATFORM_Linux -DUSING_MY_LIB.
This is because there are two stages between invoking CMake and getting build system generated:
Processing. At this stage CMake reads and executes commands from cmake script(s), particularly, variable values getting evaluated and assigned. At this moment CMake just collecting all required info and being prepared to generate build system (makefiles).
Generating. CMake uses values of special variables and properties, being left at end of processed scripts to finally decide and form generated output. This is where it constructs final command line for compiler according to its internal algorithm, not avaliable for scripting.
Target properties which might be retrieved at processing stage with get_target_property(...) or get_property(... TARGET ...) aren't complete (even when invoked at the end of script). At generating stage CMake walks through each target dependency tree (recursively) and appends properties values according to transitive usage requirements (PUBLIC and INTERFACE tagged values gets propagated).
Although, there are workarounds, depending on what final result you aiming to achieve. This is possible by applying generator expressions, which allows use final values of properties of any target (defined at processing stage)... but later!
Two general possibilites are avaliable:
Generate any output file based on template, which content contains variable references and/or generator expressions, and defined as either string variable value, or input file. It's not flexible due to very limited support of conditional logic (i.e. you cannot use complex concatenations available only with nested foreach() loops), but has advantages, that no further actions required and content described in platform-independent way. Use file(GENERATE ...) command variant. Note, that it behaves differently from file (WRITE ...) variant.
Add custom target (and/or custom command) which implements further usage of expanded value. It's platform dependent and requires user to additionally invoke make (either with some special target, or include to all target), but has advantage, that it's flexible enough because you may implement shell script (but without executable bit).
Example demonstrating solution with combining these options:
set(target_name "myexe")
file(GENERATE OUTPUT script.sh CONTENT "#!/bin/sh\n echo \"${target_name} compile definitions: $<TARGET_PROPERTY:${target_name},COMPILE_DEFINITIONS>\"")
add_custom_target(mycustomtarget
COMMAND echo "\"Platform: $<PLATFORM_ID>\""
COMMAND /bin/sh -s < script.sh
)
After calling CMake build directory will contain file script.sh and invoking make mycustomtarget will print to console:
Platform: Linux
myexe compile definitions: PLATFORM_Linux USING_MY_LIB
Use
set(CMAKE_EXPORT_COMPILE_COMMANDS true)
and get compile_commands.json
I need a way to add additional dependencies to a custom target. I have a macro which adds resource files to a particular project, used like this:
ADD_RESOURCES( ${TARGET} some/path pattern1 pattern2 )
ADD_RESOURCES( ${TARGET} another/path pattern1 )
I create a target called ${TARGET}_ASSETS and would like to attach the generation of all these resources to the one target. add_dependencies however only accepts other targets. So if I produce a file via a add_custom_command I cannot use that as a dependency.
The workaround might be to just create a new custom taget for each call to ADD_RESOURCES and then attached that to the ASSETS target. Each target requires a unique name however, and these is no way to generate this unique name from the parameters of ADD_RESOURCES.
One work-around is to postpone the generation of the ${target}_ASSETS custom targets until all dependencies have been set up with calls to ADD_RESOURCES.
Instead of immediately adding the dependencies to the custom target, the macro ADD_RESOURCES has to record the dependencies in a global variable, whose name depends on the target:
macro (ADD_RESOURCES _targetName)
set (_dependencies ${ARGN})
...
# record depencies in a target dependency variable
if (DEFINED ${_targetName}_Dependencies)
list (APPEND ${_targetName}_Dependencies ${_dependencies})
else()
set (${_targetName}_Dependencies ${_dependencies})
endif()
endmacro()
Then add another helper macro which determines all defined target dependency variables through reflection and sets up a custom target for each target:
macro (SETUP_ASSETS_TARGETS)
get_cmake_property(_vars VARIABLES)
foreach (_var ${_vars})
if (_var MATCHES "(.+)_Dependencies")
set (_targetName ${CMAKE_MATCH_1})
set (_targetDependencies ${${_var}})
message("${_targetName} depends on ${_targetDependencies}")
add_custom_target(${_targetName}_ASSETS DEPENDS ${_targetDependencies})
endif()
endforeach()
endmacro()
In your CMakeLists.txt add all necessary dependencies with calls to ADD_RESOURCES, then call the SETUP_ASSETS_TARGETS macro to have all custom targets defined.
ADD_RESOURCES( target1 some/path pattern1 pattern2 )
ADD_RESOURCES( target1 another/path pattern1 )
ADD_RESOURCES( target2 foo/bar pattern1 )
...
...
SETUP_ASSETS_TARGETS()
I know this is a late answer, but i post my solution for everyone who searches for this problem:
function(target_resources THIS)
if (NOT TARGET ${THIS}_res)
# this is just a pseudo command which can be appended later
add_custom_command(OUTPUT ${THIS}_dep COMMAND cd ${CMAKE_CURRENT_SOURCE_DIR})
# add a dependency with a target, as a command itself can not be a dependency
add_custom_target(${THIS}_res DEPENDS ${THIS}_dep)
add_dependencies(${THIS} ${THIS}_res)
endif ()
get_target_property(RUNTIME_OUTPUT_DIRECTORY ${THIS} RUNTIME_OUTPUT_DIRECTORY)
foreach (RES_FILE IN LISTS ARGN)
if (IS_ABSOLUTE ${RES_FILE})
file(RELATIVE_PATH PATH ${CMAKE_CURRENT_SOURCE_DIR} ${RES_FILE})
endif ()
# append the resource command with our resource
add_custom_command(OUTPUT ${THIS}_dep
COMMAND ${CMAKE_COMMAND} -E copy
${CMAKE_CURRENT_SOURCE_DIR}/${RES_FILE}
${RUNTIME_OUTPUT_DIRECTORY}/${RES_FILE}
APPEND)
endforeach ()
endfunction()
The benefit of this solution is that is does not rely on global variables nor the need to invoke a setup macro.