Why I cannot do that? I get compilation error.
public interface A {
void update(Object a);
}
public class B implements A{
void update(Long a) {
}
}
That is Java 8
I do not see here violating any OO principle.
That's really make my time difficult to implement a generic API...
(I try to get Generics out of the play because the generic API gets counter-intuitive)
You get a compilation error because void update(Long a) does not implement void update(Object a).
You can implement it as follows:
public class B implements A {
void update(Object o) {
if (!(o instanceof Long)) {
// possibly throw an exception
}
Long a = (Long) o;
...
}
}
A class that implements an interface must implement all the methods declared in the interface. The methods must have the exact same signature (name + parameters) as declared in the interface. The class does not need to implement (declare) the variables of an interface. Only the methods.
Source:
http://tutorials.jenkov.com/java/interfaces.html#:~:text=A%20class%20that%20implements%20an,Only%20the%20methods.
Related
if I have the interface interfaceA
public interface IInterfaceA
{
void MethodA();
void MethodB();
}
and I have the classA
class ClassA:IInterfaceA
{
public void MethodA()
{
}
public void MethodB()
{
}
}
it's ok that I use ninject's bind,but when it comes that I have a method that called MethodC,I think the method should only exists in classA(just for classA) and should not be defined in InterfaceA,so how to use ninject'bind when just calling like this:
var a = _kernel.get<IInterfaceA>()
should I convert the result into ClassA ? (is that a bad habbit?) or there are another solution
Usually this is needed when you want interface separation but need both interfaces to be implemented by the same object since it holds data relevant to both interfaces. If that is not the case you would be able to separate interfaces and implementation completely - and then you should do so.
For simplicitys sake i'm going to asume Singleton Scope, but you could also use any other scope.
Create two interfaces instead:
public interface IInterfaceA {
{
void MethodA();
}
public interface IInterfaceC {
void MethodC();
}
public class SomeClass : IInterfaceA, IInterfaceC {
....
}
IBindingRoot.Bind<IInterfaceA, IInterfaceB>().To<SomeClass>()
.InSingletonScope();
var instanceOfA = IResolutionRoot.Get<IInterfaceA>();
var instanceOfB = IResolutionRoot.Get<IInterfaceB>();
instanceOfA.Should().Be(instanceOfB);
Does this answer your question?
I am trying to find a way to have a factory class / method that would take in an object or some kind of identifier (string or type) then based off the input parameter determine which implementation of the interface to create and return.
how do I setup my factory method and register the dependency for the interface? following is what I have roughly.
public class ISampleFactory
{
public ISample GetSample(Type type)
{
// do something here to return an implementation of ISample
}
}
public class SampleA : ISample
{
public void DoSomething();
}
public class SampleB : ISample
{
public void DoSomething();
}
public interface ISample
{
void DoSomethin();
}
Have a look at ninject Contextual Bindings Documentation:
You can either use Named Bindings:
this.Bind<ISample>().To<SampleA>().Named("A");
this.Bind<ISample>().To<SampleB>().Named("B");
or a conditional binding with any of the already available extensions or write your own:
this.Bind<ISample>().To<SampleA>().When(...);
this.Bind<ISample>().To<SampleB>().When(...);
see https://github.com/ninject/ninject/wiki/Contextual-Binding
i have a question regarding design patterns.
suppose i want to design pig killing factory
so the ways will be
1) catch pig
2)clean pig
3) kill pig
now since these pigs are supplied to me by a truck driver
now if want to design an application how should i proceed
what i have done is
public class killer{
private Pig pig ;
public void catchPig(){ //do something };
public void cleanPig(){ };
public void killPig(){};
}
now iam thing since i know that the steps will be called in catchPig--->cleanPig---->KillPig manner so i should have an abstract class containing these methods and an execute method calling all these 3 methods.
but i can not have instance of abstract class so i am confused how to implement this.
remenber i have to execute this process for all the pigs that comes in truck.
so my question is what design should i select and which design pattern is best to solve such problems .
I would suggest a different approach than what was suggested here before.
I would do something like this:
public abstract class Killer {
protected Pig pig;
protected abstract void catchPig();
protected abstract void cleanPig();
protected abstract void killPig();
public void executeKillPig {
catchPig();
cleanPig();
killPig();
}
}
Each kill will extend Killer class and will have to implement the abstract methods. The executeKillPig() is the same for every sub-class and will always be performed in the order you wanted catch->clean->kill. The abstract methods are protected because they're the inner implementation of the public executeKillPig.
This extends Avi's answer and addresses the comments.
The points of the code:
abstract base class to emphasize IS A relationships
Template pattern to ensure the steps are in the right order
Strategy Pattern - an abstract class is as much a interface (little "i") as much as a Interface (capital "I") is.
Extend the base and not use an interface.
No coupling of concrete classes. Coupling is not an issue of abstract vs interface but rather good design.
public abstract Animal {
public abstract bool Escape(){}
public abstract string SaySomething(){}
}
public Wabbit : Animal {
public override bool Escape() {//wabbit hopping frantically }
public override string SaySomething() { return #"What's Up Doc?"; }
}
public abstract class Killer {
protected Animal food;
protected abstract void Catch(){}
protected abstract void Kill(){}
protected abstract void Clean(){}
protected abstract string Lure(){}
// this method defines the process: the methods and the order of
// those calls. Exactly how to do each individual step is left up to sub classes.
// Even if you define a "PigKiller" interface we need this method
// ** in the base class ** to make sure all Killer's do it right.
// This method is the template (pattern) for subclasses.
protected void FeedTheFamily(Animal somethingTasty) {
food = somethingTasty;
Catch();
Kill();
Clean();
}
}
public class WabbitHunter : Killer {
protected override Catch() { //wabbit catching technique }
protected override Kill() { //wabbit killing technique }
protected override Clean() { //wabbit cleaning technique }
protected override Lure() { return "Come here you wascuhwy wabbit!"; }
}
// client code ********************
public class AHuntingWeWillGo {
Killer hunter;
Animal prey;
public AHuntingWeWillGo (Killer aHunter, Animal aAnimal) {
hunter = aHunter;
prey = aAnimal;
}
public void Hunt() {
if ( !prey.Escape() ) hunter.FeedTheFamily(prey)
}
}
public static void main () {
// look, ma! no coupling. Because we pass in our objects vice
// new them up inside the using classes
Killer ElmerFudd = new WabbitHunter();
Animal BugsBunny = new Wabbit();
AHuntingWeWillGo safari = new AHuntingWeWillGo( ElmerFudd, BugsBunny );
safari.Hunt();
}
The problem you are facing refer to part of OOP called polymorphism
Instead of abstract class i will be using a interface, the difference between interface an abstract class is that interface have only method descriptors, a abstract class can have also method with implementation.
public interface InterfaceOfPigKiller {
void catchPig();
void cleanPig();
void killPig();
}
In the abstract class we implement two of three available methods, because we assume that those operation are common for every future type that will inherit form our class.
public abstract class AbstractPigKiller implements InterfaceOfPigKiller{
private Ping pig;
public void catchPig() {
//the logic of catching pigs.
}
public void cleanPig() {
// the logic of pig cleaning.
}
}
Now we will create two new classes:
AnimalKiller - The person responsible for pig death.
AnimalSaver - The person responsible for pig release.
public class AnimalKiller extends AbstractPigKiller {
public void killPig() {
// The killing operation
}
}
public class AnimalSaver extends AbstractPigKiller {
public void killPing() {
// The operation that will make pig free
}
}
As we have our structure lets see how it will work.
First the method that will execute the sequence:
public void doTheRequiredOperation(InterfaceOfPigKiller killer) {
killer.catchPig();
killer.cleanPig();
killer.killPig();
}
As we see in the parameter we do not use class AnimalKiller or AnimalSever. Instead of that we have the interface. Thank to this operation we can operate on any class that implement used interface.
Example 1:
public void test() {
AnimalKiller aKiller = new AnimalKiller();// We create new instance of class AnimalKiller and assign to variable aKiller with is type of `AnimalKilleraKiller `
AnimalSaver aSaver = new AnimalSaver(); //
doTheRequiredOperation(aKiller);
doTheRequiredOperation(aSaver);
}
Example 2:
public void test() {
InterfaceOfPigKiller aKiller = new AnimalKiller();// We create new instance of class AnimalKiller and assign to variable aKiller with is type of `InterfaceOfPigKiller `
InterfaceOfPigKiller aSaver = new AnimalSaver(); //
doTheRequiredOperation(aKiller);
doTheRequiredOperation(aSaver);
}
The code example 1 and 2 are equally in scope of method doTheRequiredOperation. The difference is that in we assign once type to type and in the second we assign type to interface.
Conclusion
We can not create new object of abstract class or interface but we can assign object to interface or class type.
How does a WCF channel (created via ChannelFactory) implement ICommunicationObject, but doesn't expose the Close() method, for example, unless you cast the proxy to ICommunicationObject? Does that make sense?
I got to thinking about that on the way home today and couldn't figure it out in my head. Maybe I'm asking the wrong question? Maybe I'm asking a stupid question? :)
Is it some kind of ninja trick?
This is done via Explicit Interface Implementation.
Suppose you have an interface, like so:
public interface IFoo
{
void Foo();
}
You can implement this normally:
public class Bar : IFoo
{
public void Foo() {} // Implicit interface implementation
}
Alternatively, you can implement the interface members explicitly, which requires the cast:
public class Baz : IFoo
{
void IFoo.Foo() {} // This will require casting the object to IFoo to call
}
This can be very useful at times. For example, it is often done to implement IDisposable in classes where the preferred API would be to call .Close(), for example. By implementing IDisposable explicitly, you "hide" the Dispose() method, but still allow the class instance to be used via a using statement.
The Channel class implements the ICommunicationObject interface explicitly. Here's an example demonstrating the difference between explicit interface implementation and implicit interface implementation:
internal interface IExample
{
void DoSomething();
}
class ImplicitExample : IExample
{
public void DoSomething()
{
// ...
}
}
class ExplicitExample : IExample
{
void IExample.DoSomething()
{
// ...
}
}
class Consumer
{
void Demo()
{
var explicitExample = new ExplicitExample();
// explicitExample.DoSomething(); <-- won't compile
((IExample)explicitExample).DoSomething(); // <-- compiles
var implicitExample = new ImplicitExample();
implicitExample.DoSomething(); // <-- compiles
}
}
Here is a link to the an MSDN article on this subject: http://msdn.microsoft.com/en-us/library/ms173157.aspx
I have 2 classes that have the exact same logic/workflow, except in one method.
So, I created a abstract base class where the method that differs is declared as abstract.
Below is some sample code to demonstrate my design; can anyone offer suggestions on a better approach or am I heading in the right direction.
I didn't use an interface because both derived classes B and C literally share most of the logic. Is there a better way to do what I am doing below via dependency injection?
public abstract class A
{
public void StageData()
{
// some logic
DoSomething();
}
public void TransformData();
public abstract DoSomething();
}
public class B : A
{
public override void DoSomething()
{
// Do Something!
}
}
public class C : A
{
public override void DoSomething()
{
// Do Something!
}
}
There is nothing wrong with what you have done. To introduce dependency injection into this design would be messy and overkill - you would have to pass in a delegate:
public class ABC
{
public ABC(Action z)
{
_doSomethingAction = z;
}
public void DoSomething()
{
_doSomthingAction.Invoke();
}
private Action _doSomthingAction;
}
There would be few reasons why you want to use this approach - one would be if you needed to execute a callback. So stick with the pattern you have, don't try to overcomplicate things.