I have a very simple problem (I guess) but don't find the right syntax to do it :
The following Dataframe :
A B C
0 7 12 2
1 5 4 4
2 4 8 2
3 9 2 3
I need to create a new column D equal for each row to max (0 ; A-B+C)
I tried a np.maximum(df.A-df.B+df.C,0) but it doesn't match and give me the maximum value of the calculated column for each row (= 10 in the example).
Finally, I would like to obtain the DF below :
A B C D
0 7 12 2 0
1 5 4 4 5
2 4 8 2 0
3 9 2 3 10
Any help appreciated
Thanks
Let us try
df['D'] = df.eval('A-B+C').clip(lower=0)
Out[256]:
0 0
1 5
2 0
3 10
dtype: int64
You can use np.where:
s = df["A"]-df["B"]+df["C"]
df["D"] = np.where(s>0, s, 0) #or s.where(s>0, 0)
print (df)
A B C D
0 7 12 2 0
1 5 4 4 5
2 4 8 2 0
3 9 2 3 10
To do this in one line you can use apply to apply the maximum function to each row seperately.
In [19]: df['D'] = df.apply(lambda s: max(s['A'] - s['B'] + s['C'], 0), axis=1)
In [20]: df
Out[20]:
A B C D
0 0 0 0 0
1 5 4 4 5
2 0 0 0 0
3 9 2 3 10
Related
I have a dataframe and for each group value I want to label values. If value is less that group mean then label is 1 and if group value is more than group mean then label is 2.
input data frame is
groups num1
0 a 2
1 a 5
2 a Nan
3 b 10
4 b 4
5 b 0
6 b 7
7 c 2
8 c 4
9 c 1
Here mean values for group a, b ,c are 3.5, 5.25 and 2.33 respectively and output data frame is .
groups out
0 a 1
1 a 2
2 a Nan
3 b 2
4 b 1
5 b 1
6 b 2
7 c 1
8 c 2
9 c 1
I want to use panads.cut and may be pandas.groupby and pandas.apply also.
and also how can I skip Null values here?
Thanks in advance
cut is not really pertinent here. Use groupby.transform('mean') and numpy.where:
df['out'] = np.where(df['num1'].lt(df.groupby('groups')['num1']
.transform('mean')),
1, 2)
Output (as new column "out" for clarity):
groups num1 out
0 a 2 1
1 a 5 2
2 a 7 2
3 b 10 2
4 b 4 1
5 b 0 1
6 b 7 2
7 c 2 1
8 c 4 2
9 c 1 1
I really want cut
OK, but it's not really nice and performant:
(df.groupby('groups')['num1']
.transform(lambda g: pd.cut(g, [-np.inf, g.mean(), np.inf], labels=[1, 2]))
)
I have a data frame df:
df=
A B C D
1 4 7 2
2 6 -3 9
-2 7 2 4
I am interested in changing the whole row values to 0 if it's element in the column C is negative. i.e. if df['C']<0, its corresponding row should be filled with the value 0 as shown below:
df=
A B C D
1 4 7 2
0 0 0 0
-2 7 2 4
You can use DataFrame.where or mask:
df.where(df['C'] >= 0, 0)
A B C D
0 1 4 7 2
1 0 0 0 0
2 -2 7 2 4
Another option is simple masking via multiplication:
df.mul(df['C'] >= 0, axis=0)
A B C D
0 1 4 7 2
1 0 0 0 0
2 -2 7 2 4
You can also set values directly via loc as shown in this comment:
df.loc[df['C'] <= 0] = 0
df
A B C D
0 1 4 7 2
1 0 0 0 0
2 -2 7 2 4
Which has the added benefit of modifying the original DataFrame (if you'd rather not return a copy).
I would like to bin a dataframe by the values in a single column into bins of a specific size and number.
Here is an example df:
df= pd.DataFrame(np.random.randint(0,10000,size=(10000, 4)), columns=list('ABCD'))
Say I want to bin by column D, I will first sort the data:
df.sort('D')
I would now wish to bin so that the first if bin size is 50 and bin number is 100, the first 50 values will go into bin 1, the next into bin 2, and so on and so forth. Any remaining values after the twenty bins should all go into the final bin. Is there anyway of doing this?
EDIT:
Here is a sample input:
x = pd.DataFrame(np.random.randint(0,10,size=(10, 4)), columns=list('ABCD'))
And here is the expected output:
A B C D bin
0 6 8 6 5 3
1 5 4 9 1 1
2 5 1 7 4 3
3 6 3 3 3 2
4 2 5 9 3 2
5 2 5 1 3 2
6 0 1 1 0 1
7 3 9 5 8 3
8 2 4 0 1 1
9 6 4 5 6 3
As an extra aside, is it also possible to bin any equal values in the same bin? So for example, say I have bin 1 which contains values, 0,1,1 and then bin 2 contains 1,1,2. Is there any way of putting those two 1 values in bin 2 into bin 1? This will create very uneven bin sizes but this is not an issue.
It seems you need floor divide np.arange and then assign to new column:
idx = df['D'].sort_values().index
df['b'] = pd.Series(np.arange(len(df)) // 3 + 1, index = idx)
print (df)
A B C D bin b
0 6 8 6 5 3 3
1 5 4 9 1 1 1
2 5 1 7 4 3 3
3 6 3 3 3 2 2
4 2 5 9 3 2 2
5 2 5 1 3 2 2
6 0 1 1 0 1 1
7 3 9 5 8 3 4
8 2 4 0 1 1 1
9 6 4 5 6 3 3
Detail:
print (np.arange(len(df)) // 3 + 1)
[1 1 1 2 2 2 3 3 3 4]
EDIT:
I create another question about problem with last values here:
N = 3
idx = df['D'].sort_values().index
#one possible solution, thanks divakar
def replace_irregular_groupings(a, N):
n = len(a)
m = N*(n//N)
if m!=n:
a[m:] = a[m-1]
return a
idx = df['D'].sort_values().index
arr = replace_irregular_groupings(np.arange(len(df)) // N + 1, N)
df['b'] = pd.Series(arr, index = idx)
print (df)
A B C D bin b
0 6 8 6 5 3 3
1 5 4 9 1 1 1
2 5 1 7 4 3 3
3 6 3 3 3 2 2
4 2 5 9 3 2 2
5 2 5 1 3 2 2
6 0 1 1 0 1 1
7 3 9 5 8 3 3
8 2 4 0 1 1 1
9 6 4 5 6 3 3
I have a dataframe that looks like this:
A B C
1 1 8 3
2 5 4 3
3 5 8 1
and I want to count the values so to make df like this:
total
1 2
3 2
4 1
5 2
8 2
is it possible with pandas?
With np.unique -
In [332]: df
Out[332]:
A B C
1 1 8 3
2 5 4 3
3 5 8 1
In [333]: ids, c = np.unique(df.values.ravel(), return_counts=1)
In [334]: pd.DataFrame({'total':c}, index=ids)
Out[334]:
total
1 2
3 2
4 1
5 2
8 2
With pandas-series -
In [357]: pd.Series(np.ravel(df)).value_counts().sort_index()
Out[357]:
1 2
3 2
4 1
5 2
8 2
dtype: int64
You can also use stack() and groupby()
df = pd.DataFrame({'A':[1,8,3],'B':[5,4,3],'C':[5,8,1]})
print(df)
A B C
0 1 5 5
1 8 4 8
2 3 3 1
df1 = df.stack().reset_index(1)
df1.groupby(0).count()
level_1
0
1 2
3 2
4 1
5 2
8 2
Other alternative may be to use stack, followed by value_counts then, result changed to frame and finally sorting the index:
count_df = df.stack().value_counts().to_frame('total').sort_index()
count_df
Result:
total
1 2
3 2
4 1
5 2
8 2
using np.unique(, return_counts=True) and np.column_stack():
pd.DataFrame(np.column_stack(np.unique(df, return_counts=True)))
returns:
0 1
0 1 2
1 3 2
2 4 1
3 5 2
4 8 2
I have a dataframe and a list. I would like to iterate over elements in the list and find their location in dataframe then store this to a new dataframe
my_list = ['1','2','3','4','5']
df1 = pd.DataFrame(my_list, columns=['Num'])
dataframe : df1
Num
0 1
1 2
2 3
3 4
4 5
dataframe : df2
0 1 2 3 4
0 9 12 8 6 7
1 11 1 4 10 13
2 5 14 2 0 3
I've tried something similar to this but doesn't work
for x in my_list:
i,j= np.array(np.where(df==x)).tolist()
df2['X'] = df.append(i)
df2['Y'] = df.append(j)
so looking for a result like this
dataframe : df1 updated
Num X Y
0 1 1 1
1 2 2 2
2 3 2 4
3 4 1 2
4 5 2 0
any hints or ideas would be appreciated
Instead of trying to find the value in df2, why not just make df2 a flat dataframe.
df2 = pd.melt(df2)
df2.reset_index(inplace=True)
df2.columns = ['X', 'Y', 'Num']
so now your df2 just looks like this:
Index X Y Num
0 0 0 9
1 1 0 11
2 2 0 5
3 3 1 12
4 4 1 1
5 5 1 14
You can of course sort by Num and if you just want the values from your list you can further filter df2:
df2 = df2[df2.Num.isin(my_list)]