Is this implementation safe to synchronize the access to the public fields/properties?
class Attributes(
private val attrsMap: MutableMap<String, Any?> = Collections.synchronizedMap(HashMap())
) {
var attr1: Long? by attrsMap
var attr2: String? by attrsMap
var attr3: Date? by attrsMap
var attr4: Any? = null
...
}
Mostly.
Because the underlying map is is only accessible via the synchronised wrapper, you can't have any issues caused by individual calls, such as simultaneous gets and/or puts (which is the main cause of race conditions): only one thread can be making such a call, and the Java memory model ensures that the results are then visible to all threads.
You could have race conditions involving a sequence of calls, such as iterating through the map, or a check followed by a modify, if the map could be modified in between. (That sort of problem can occur even on a single thread.) But as long as the rest of your class avoided such sequences, and didn't leak a reference to the map, you'd be safe.
And because the types Long, String, and Date are immutable, you can't have any issues with their contents being modified.
That is a concern with the Any parameter, though. If it stored e.g. a StringBuilder, one thread could be modifying its contents while another was accessing it, with hilarious consequences. There's not much you can do about that in a wrapper class, though.
By the way, instead of using a synchronised wrapper, you could use a ConcurrentHashMap, which would avoid the synchronisation in most cases (at the cost of a bit more memory). It also provides many methods which can replace call sequences, such as getOrPut(); it's a really powerful tool for writing high-performance multithreaded code.
Related
Hi I've got list of 1330 objects and would like to apply method and obtain set as result.
val result = listOf1330
.asSequence()
.map {
someMethod(it)
}
val resultSet = result.toSet()
It works fine without toSet but if then execution time is about 10 times longer.
I've used sequence to make it work faster and it is but as a result I need list without duplicates (set).
Simply: What is most effective way to convert sequence to set?
val result = listOf1330.mapTo(HashSet()) { someMethod(it) }
It makes less sense to use streams or sequences to implement the transformation - you will need all elements from the collection, not several. The mapTo (and map) functions are inline in Kotlin. It means the code will be substituted into the call site, it will not have lambda created and executed many times. We use mapTo to avoid the second copy of the collection done by the toSet() function.
The .parallelStream() may add more performance, if you like to run the computation in several threads. It is still a good idea to measure how good the load is balanced between threads. The performance may depend on the collection implementation class, on which you call it
If your someObject has a slow implementation of equals() or hashCode(), or gives the same hash code for many objects, then that could account for the delay, and you may be able to improve it.
Otherwise, if the objects are big, the delay may be mostly due to the amount of memory that must be accessed to store them all; if so, that's the price you'll have to pay if you want a set with all those objects in memory.
Sequence.toSet() uses a LinkedHashSet. You could try providing another Set instance, using e.g. toCollection(HashSet()), to see if that's any faster. (You wouldn't get the same iteration order, though.)
I agree with gidds answer on HashSet and LinkedHashSet performance.
LinkedHashSet is more expensive for insertions than HashSet;
However, in the above use case, I think we can leverage parallelStream to improve the performance. Under the hood, Kotlin uses the Java parallelStream.
val result: Set<String> = listOf("sdgds", "fdgdfsg", "dsfgsdfg")
.parallelStream()
.map {
someMethod(it)
}.collect(Collectors.toSet())
The Collectors.toSet() uses HashSet. So, we should be ok in insertion performance perspective.
Use distict or distictBy.
val result = sequenceOf("a", "b", "a", "c").distinct()
// -> "a", "b", "c"
// for more complex cases use custom comparator function
val result = getMyObjectsSequence().distinctBy { it.name }
This approach lets keep using sequence without involving explicit Iterables (List, Set, etc.).
Nevertheless, there is no magic, and "distinct" still uses HashSet under the hood and in case of really huge sequence it may cause sufficient memory usage and it must be kept in mind while applying this function.
In my software, I have some various values which use property delegation.
This is a simple similar example showing what I do:
class ExampleDelegate<T>(val value: T) {
operator fun getValue(thisRef: Any?, property: KProperty<*>) = value
}
val example by ExampleDelegate(1000) // number larger than 127 (no box cache)
What I've noticed, however, is that referring to this value seems to create an autoboxed object (java.lang.Integer) on EVERY reference. Because the value must be referenced potentially millions or times per second, this results in massive garbage creation for my software; heavy stress is put on the garbage collector.
Is there a way to avoid the overhead? If not directly, are there any clever ways to "emulate" property delegation that are performant?
Submitted a bug report on YouTrack: https://youtrack.jetbrains.com/issue/KT-13606
As discussed in the bug report, your app generates garbage because your property delegate is generic, and therefore requires boxing of values. If you use a non-generic property delegate with a primitive type, no boxing happens.
I've searched StackOverflow and there are many ConcurrentModificationException questions. After reading them, I'm still confused. I'm getting a lot of these exceptions. I'm using a "Registry" setup to keep track of Objects:
public class Registry {
public static ArrayList<Messages> messages = new ArrayList<Messages>();
public static ArrayList<Effect> effects = new ArrayList<Effect>();
public static ArrayList<Projectile> proj = new ArrayList<Projectile>();
/** Clears all arrays */
public static void recycle(){
messages.clear();
effects.clear();
proj.clear();
}
}
I'm adding and removing objects to these lists by accessing the ArrayLists like this: Registry.effects.add(obj) and Registry.effects.remove(obj)
I managed to get around some errors by using a retry loop:
//somewhere in my game..
boolean retry = true;
while (retry){
try {
removeEffectsWithSource("CHARGE");
retry = false;
}
catch (ConcurrentModificationException c){}
}
private void removeEffectsWithSource(String src) throws ConcurrentModificationException {
ListIterator<Effect> it = Registry.effects.listIterator();
while ( it.hasNext() ){
Effect f = it.next();
if ( f.Source.equals(src) ) {
f.unapplyEffects();
Registry.effects.remove(f);
}
}
}
But in other cases this is not practical. I keep getting ConcurrentModificationExceptions in my drawProjectiles() method, even though it doesn't modify anything. I suppose the culprit is if I touched the screen, which creates a new Projectile object and adds it to Registry.proj while the draw method is still iterating.
I can't very well do a retry loop with the draw method, or it will re-draw some of the objects. So now I'm forced to find a new solution.. Is there a more stable way of accomplishing what I'm doing?
Oh and part 2 of my question: Many people suggest using ListIterators (as I have been using), but I don't understand.. if I call ListIterator.remove() does it remove that object from the ArrayList it's iterating through, or just remove it from the Iterator itself?
Top line, three recommendations:
Don't do the "wrap an exception in a loop" thing. Exceptions are for exceptional conditions, not control flow. (Effective Java #57 or Exceptions and Control Flow or Example of "using exceptions for control flow")
If you're going to use a Registry object, expose thread-safe behavioral, not accessor methods on that object and contain the concurrency reasoning within that single class. Your life will get better. No exposing collections in public fields. (ew, and why are those fields static?)
To solve the actual concurrency issues, do one of the following:
Use synchronized collections (potential performance hit)
Use concurrent collections (sometimes complicated logic, but probably efficient)
Use snapshots (probably with synchronized or a ReadWriteLock under the covers)
Part 1 of your question
You should use a concurrent data structure for the multi-threaded scenario, or use a synchronizer and make a defensive copy. Probably directly exposing the collections as public fields is wrong: your registry should expose thread-safe behavioral accessors to those collections. For instance, maybe you want a Registry.safeRemoveEffectBySource(String src) method. Keep the threading specifics internal to the registry, which seems to be the "owner" of this aggregate information in your design.
Since you probably don't really need List semantics, I suggest replacing these with ConcurrentHashMaps wrapped into Set using Collections.newSetFromMap().
Your draw() method could either a) use a Registry.getEffectsSnapshot() method that returns a snapshot of the set; or b) use an Iterable<Effect> Registry.getEffects() method that returns a safe iterable version (maybe just backed by the ConcurrentHashMap, which won't throw CME under any circumstances). I think (b) is preferable here, as long as the draw loop doesn't need to modify the collection. This provides a very weak synchronization guarantee between the mutator thread(s) and the draw() thread, but assuming the draw() thread runs often enough, missing an update or something probably isn't a big deal.
Part 2 of your question
As another answer notes, in the single-thread case, you should just make sure you use the Iterator.remove() to remove the item, but again, you should wrap this logic inside the Registry class if at all possible. In some cases, you'll need to lock a collection, iterate over it collecting some aggregate information, and make structural modifications after the iteration completes. You ask if the remove() method just removes it from the Iterator or from the backing collection... see the API contract for Iterator.remove() which tells you it removes the object from the underlying collection. Also see this SO question.
You cannot directly remove an item from a collection while you are still iterating over it, otherwise you will get a ConcurrentModificationException.
The solution is, as you hint, to call the remove method on the Iterator instead. This will remove it from the underlying collection as well, but it will do it in such a way that the Iterator knows what's going on and so doesn't throw an exception when it finds the collection has been modified.
Does it affect the time in loading the application?
or any other issues in doing so?
The question is vague on what "long" means. Here are some possible interpretations:
Interpretation #1: The constructor has many parameters
Constructors with many parameters can lead to poor readability, and better alternatives exist.
Here's a quote from Effective Java 2nd Edition, Item 2: Consider a builder pattern when faced with many constructor parameters:
Traditionally, programmers have used the telescoping constructor pattern, in which you provide a constructor with only the required parameters, another with a single optional parameters, a third with two optional parameters, and so on...
The telescoping constructor pattern is essentially something like this:
public class Telescope {
final String name;
final int levels;
final boolean isAdjustable;
public Telescope(String name) {
this(name, 5);
}
public Telescope(String name, int levels) {
this(name, levels, false);
}
public Telescope(String name, int levels, boolean isAdjustable) {
this.name = name;
this.levels = levels;
this.isAdjustable = isAdjustable;
}
}
And now you can do any of the following:
new Telescope("X/1999");
new Telescope("X/1999", 13);
new Telescope("X/1999", 13, true);
You can't, however, currently set only the name and isAdjustable, and leaving levels at default. You can provide more constructor overloads, but obviously the number would explode as the number of parameters grow, and you may even have multiple boolean and int arguments, which would really make a mess out of things.
As you can see, this isn't a pleasant pattern to write, and even less pleasant to use (What does "true" mean here? What's 13?).
Bloch recommends using a builder pattern, which would allow you to write something like this instead:
Telescope telly = new Telescope.Builder("X/1999").setAdjustable(true).build();
Note that now the parameters are named, and you can set them in any order you want, and you can skip the ones that you want to keep at default values. This is certainly much better than telescoping constructors, especially when there's a huge number of parameters that belong to many of the same types.
See also
Wikipedia/Builder pattern
Effective Java 2nd Edition, Item 2: Consider a builder pattern when faced with many constructor parameters (excerpt online)
Related questions
When would you use the Builder Pattern?
Is this a well known design pattern? What is its name?
Interpretation #2: The constructor does a lot of work that costs time
If the work must be done at construction time, then doing it in the constructor or in a helper method doesn't really make too much of a difference. When a constructor delegates work to a helper method, however, make sure that it's not overridable, because that could lead to a lot of problems.
Here's some quote from Effective Java 2nd Edition, Item 17: Design and document for inheritance, or else prohibit it:
There are a few more restrictions that a class must obey to allow inheritance. Constructors must not invoke overridable methods, directly or indirectly. If you violate this rule, program failure will result. The superclass constructor runs before the subclass constructor, so the overriding method in the subclass will be invoked before the subclass constructor has run. If the overriding method depends on any initialization performed by the subclass constructor, the method will not behave as expected.
Here's an example to illustrate:
public class ConstructorCallsOverride {
public static void main(String[] args) {
abstract class Base {
Base() { overrideMe(); }
abstract void overrideMe();
}
class Child extends Base {
final int x;
Child(int x) { this.x = x; }
#Override void overrideMe() {
System.out.println(x);
}
}
new Child(42); // prints "0"
}
}
Here, when Base constructor calls overrideMe, Child has not finished initializing the final int x, and the method gets the wrong value. This will almost certainly lead to bugs and errors.
Interpretation #3: The constructor does a lot of work that can be deferred
The construction of an object can be made faster when some work is deferred to when it's actually needed; this is called lazy initialization. As an example, when a String is constructed, it does not actually compute its hash code. It only does it when the hash code is first required, and then it will cache it (since strings are immutable, this value will not change).
However, consider Effective Java 2nd Edition, Item 71: Use lazy initialization judiciously. Lazy initialization can lead to subtle bugs, and don't always yield improved performance that justifies the added complexity. Do not prematurely optimize.
Constructors are a little special in that an unhandled exception in a constructor may have weird side effects. Without seeing your code I would assume that a long constructor increases the risk of exceptions. I would make the constructor as simple as needed and utilize other methods to do the rest in order to provide better error handling.
The biggest disadvantage is probably the same as writing any other long function -- that it can get complex and difficult to understand.
The rest is going to vary. First of all, length and execution time don't necessarily correlate -- you could have a single line (e.g., function call) that took several seconds to complete (e.g., connect to a server) or lots of code that executed entirely within the CPU and finished quickly.
Startup time would (obviously) only be affected by constructors that were/are invoked during startup. I haven't had an issue with this in any code I've written (at all recently anyway), but I've seen code that did. On some types of embedded systems (for one example) you really want to avoid creating and destroying objects during normal use, so you create almost everything statically during bootup. Once it's running, you can devote all the processor time to getting the real work done.
Constructor is yet another function. You need very long functions called many times to make the program work slow. So if it's only called once it usually won't matter how much code is inside.
It affects the time it takes to construct that object, naturally, but no more than having an empty constructor and calling methods to do that work instead. It has no effect on the application load time
In case of copy constructor if we use donot use reference in that case
it will create an object and call the copy constructor and passing the
value to the copy constructor and each time a new object is created and
each time it will call the copy constructor it goes to infinite and
fill the memory then it display the error message .
if we pass the reference it will not create the new object for storing
the value. and no recursion will take place
I would avoid doing anything in your constructor that isn't absolutely necessary. Initialize your variables in there, and try not to do much else. Additional functionality should reside in separate functions that you call only if you need to.
I have an object called Parameters that gets tossed from method to method down and up the call tree, across package boundaries. It has about fifty state variables. Each method might use one or two variables to control its output.
I think this is a bad idea, beacuse I can't easily see what a method needs to function, or even what might happen if with a certain combination of parameters for module Y which is totally unrelated to my current module.
What are some good techniques for decreasing coupling to this god object, or ideally eliminating it ?
public void ExporterExcelParFonds(ParametresExecution parametres)
{
ApplicationExcel appExcel = null;
LogTool.Instance.ExceptionSoulevee = false;
bool inclureReferences = parametres.inclureReferences;
bool inclureBornes = parametres.inclureBornes;
DateTime dateDebut = parametres.date;
DateTime dateFin = parametres.dateFin;
try
{
LogTool.Instance.AfficherMessage(Variables.msg_GenerationRapportPortefeuilleReference);
bool fichiersPreparesAvecSucces = PreparerFichiers(parametres, Sections.exportExcelParFonds);
if (!fichiersPreparesAvecSucces)
{
parametres.afficherRapportApresGeneration = false;
LogTool.Instance.ExceptionSoulevee = true;
}
else
{
The caller would do :
PortefeuillesReference pr = new PortefeuillesReference();
pr.ExporterExcelParFonds(parametres);
First, at the risk of stating the obvious: pass the parameters which are used by the methods, rather than the god object.
This, however, might lead to some methods needing huge amounts of parameters because they call other methods, which call other methods in turn, etcetera. That was probably the inspiration for putting everything in a god object. I'll give a simplified example of such a method with too many parameters; you'll have to imagine that "too many" == 3 here :-)
public void PrintFilteredReport(
Data data, FilterCriteria criteria, ReportFormat format)
{
var filteredData = Filter(data, criteria);
PrintReport(filteredData, format);
}
So the question is, how can we reduce the amount of parameters without resorting to a god object? The answer is to get rid of procedural programming and make good use of object oriented design. Objects can use each other without needing to know the parameters that were used to initialize their collaborators:
// dataFilter service object only needs to know the criteria
var dataFilter = new DataFilter(criteria);
// report printer service object only needs to know the format
var reportPrinter = new ReportPrinter(format);
// filteredReportPrinter service object is initialized with a
// dataFilter and a reportPrinter service, but it doesn't need
// to know which parameters those are using to do their job
var filteredReportPrinter = new FilteredReportPrinter(dataFilter, reportPrinter);
Now the FilteredReportPrinter.Print method can be implemented with only one parameter:
public void Print(data)
{
var filteredData = this.dataFilter.Filter(data);
this.reportPrinter.Print(filteredData);
}
Incidentally, this sort of separation of concerns and dependency injection is good for more than just eliminating parameters. If you access collaborator objects through interfaces, then that makes your class
very flexible: you can set up FilteredReportPrinter with any filter/printer implementation you can imagine
very testable: you can pass in mock collaborators with canned responses and verify that they were used correctly in a unit test
If all your methods are using the same Parameters class then maybe it should be a member variable of a class with the relevant methods in it, then you can pass Parameters into the constructor of this class, assign it to a member variable and all your methods can use it with having to pass it as a parameter.
A good way to start refactoring this god class is by splitting it up into smaller pieces. Find groups of properties that are related and break them out into their own class.
You can then revisit the methods that depend on Parameters and see if you can replace it with one of the smaller classes you created.
Hard to give a good solution without some code samples and real world situations.
It sounds like you are not applying object-oriented (OO) principles in your design. Since you mention the word "object" I presume you are working within some sort of OO paradigm. I recommend you convert your "call tree" into objects that model the problem you are solving. A "god object" is definitely something to avoid. I think you may be missing something fundamental... If you post some code examples I may be able to answer in more detail.
Query each client for their required parameters and inject them?
Example: each "object" that requires "parameters" is a "Client". Each "Client" exposes an interface through which a "Configuration Agent" queries the Client for its required parameters. The Configuration Agent then "injects" the parameters (and only those required by a Client).
For the parameters that dictate behavior, one can instantiate an object that exhibits the configured behavior. Then client classes simply use the instantiated object - neither the client nor the service have to know what the value of the parameter is. For instance for a parameter that tells where to read data from, have the FlatFileReader, XMLFileReader and DatabaseReader all inherit the same base class (or implement the same interface). Instantiate one of them base on the value of the parameter, then clients of the reader class just ask for data to the instantiated reader object without knowing if the data come from a file or from the DB.
To start you can break your big ParametresExecution class into several classes, one per package, which only hold the parameters for the package.
Another direction could be to pass the ParametresExecution object at construction time. You won't have to pass it around at every function call.
(I am assuming this is within a Java or .NET environment) Convert the class into a singleton. Add a static method called "getInstance()" or something similar to call to get the name-value bundle (and stop "tramping" it around -- see Ch. 10 of "Code Complete" book).
Now the hard part. Presumably, this is within a web app or some other non batch/single-thread environment. So, to get access to the right instance when the object is not really a true singleton, you have to hide selection logic inside of the static accessor.
In java, you can set up a "thread local" reference, and initialize it when each request or sub-task starts. Then, code the accessor in terms of that thread-local. I don't know if something analogous exists in .NET, but you can always fake it with a Dictionary (Hash, Map) which uses the current thread instance as the key.
It's a start... (there's always decomposition of the blob itself, but I built a framework that has a very similar semi-global value-store within it)