Can polymorpism be applied to composition in c++? - oop

I was planning on making a 2d chessboard game using classes and other OOP techniques. I know a little on polymorphism and was wondering if the technique used in polymorphism whereby I can delegate duties to the children class from the base class is applicable via composition.
[Edited]
A chessboard has players.I want to polymorphically call method functions move defined in both players without having to say player1.move(), player2.move()

Preface
Don't get lost in design patterns or design techniques. This question seems like an XY problem. Always take a step back and consider what you want to achieve.
Target
A single call to ask both players to move.
TL;DR
If there is no other context, I'd say just call them!
Explanation
In general:
A chess board always have two players. ( unless you're designing a specialized rule )
A chess flow is always operated in round robin ( first, then second, and then repeat ).
So what's wrong a chess flow controller to call two players to move in fixed order?
What would you gain from applying polymorphism to replace following code?
void begin_round(){
player1.move();
player2.move();
}
You'd save two line of type by calling a move... Hey wait! That's what begin_round() does!
Polymorphism approach does not save anything but increase complexity of the system which is a bad sign for system design.
Most of time, an as stupid as possible design is better than a complex approach, unless the design would save a lot of maintaining or developing resource. If a design saves nothing, then don't use it until it's a must.
Others
Composition is quite common in your case since a game is a composition for a board and two players.

Yes it can be implemented, what is your example?

Related

OOP and Design Practices: Accessing functionality of member objects?

I've been working on a small project using C++ (although this question might be considered language-agnostic) and I'm trying to write my program so that it is as efficient and encapsulated as possible. I'm a self-taught and inexperienced programmer but I'm trying to teach myself good habits when it comes to using interfaces and OOP practices. I'm mainly interested in the typical 'best' practices when it comes to accessing the methods of an object that is acting as a subsystem for another class.
First, let me explain what I mean:
An instance of ClassGame wants to render out a 2d sprite image using the private ClassRenderer subsystem of ClassEngine. ClassGame only has access to the interface of ClassEngine, and ClassRenderer is supposed to be a subsystem of ClassEngine (behind a layer of abstraction).
My question is based on the way that the ClassGame object can indirectly make use of ClassRenderer's functionality while still remaining fast and behind a layer of abstraction. From what I've seen in lessons and other people's code examples, there seems to be two basic ways of doing this:
The first method that I learned via a series of online lectures on OOP design was to have one class delegate tasks to it's private member objects internally. [ In this example, ClassGame would call a method that belongs to ClassEngine, and ClassEngine would 'secretly' pass that request on to it's ClassRenderer subsystem by calling one of its methods. ] Kind of a 'daisy chain' of function calls. This makes sense to me, but it seems like it may be slower than some alternative options.
Another way that I've seen in other people's code is have an accessor method that returns a reference or pointer to the location of a particular subsystem. [ So, ClassGame would call a simple method in ClassEngine that would return a reference/pointer to the object that makes up its ClassRenderer subsystem ]. This route seems convenient to me, but it also seems to eliminate the point of having a private member act as a sub-component of a bigger class. Of course, this also means writing much fewer 'mindless' functions that simply pass a particular task on, due to the fact that you can simply write one getter function for each independent subsystem.
Considering the various important aspects of OO design (abstraction, encapsulation, modularity, usability, extensibility, etc.) while also considering speed and performance, is it better to use the first or the second type of method for delegating tasks to a sub-component?
The book Design Patterns Explained discusses a very similar problem in its chapter about the Bridge Pattern. Apparently this chapter is freely available online.
I would recommend you to read it :)
I think your type-1 approach resembles the OOP bridge pattern the most.
Type-2, returning handles to internal data is something that should generally be avoided.
There are many ways to do what you want, and it really depends on the context (for example, how big the project is, how much you expect to reuse from it in other projects etc.)
You have three classes: Game, Engine and Renderer. Both of your solutions make the Game commit to the Engine's interface. The second solution also makes the Game commit to the Renderer's interface. Clearly, the more interfaces you use, the more you have to change if the interfaces change.
How about a third option: The Game knows what it needs in terms of rendering, so you can create an abstract class that describes those requirements. That would be the only interface that the Game commits to. Let's call this interface AbstractGameRenderer.
To tie this into the rest of the system, again there are many ways. One option would be:
1. Implement this abstract interface using your existing Renderer class. So we have a class GameRenderer that uses Renderer and implements the AbstractGameRenderer interface.
2. The Engine creates both the Game object and the GameRenderer object.
3. The Engine passes the GameRenderer object to the Game object (using a pointer to AbstractGameRenderer).
The result: The Game can use a renderer that does what it wants. It doesn't know where it comes from, how it renders, who owns it - nothing. The GameRenderer is a specific implementation, but other implementations (using other renderers) could be written later. The Engine "knows everything" (but that may be acceptable).
Later, you want to take your Game's logic and use it as a mini-game in another game. All you need to do is create the appropriate GameRenderer (implementing AbstractGameRenderer) and pass it to the Game object. The Game object does not care that it's a different game, a different Engine and a different Renderer - it doesn't even know.
The point is that there are many solutions to design problems. This suggestion may not be appropriate or acceptable, or maybe it's exactly what you need. The principles I try to follow are:
1. Try not to commit to interfaces you can't control (you'll have to change if they change)
2. Try to prevent now the pain that will come later
In my example, the assumption is that it's less painful to change GameRenderer if Renderer changes, than it is to change a large component such as Game. But it's better to stick to principles (and minimise pain) rather than follow patterns blindly.

Non-object-oriented game tutorials

I've been tasked with writing an essay extolling the virtues of object oriented programming and creating an accompanying game to demonstrate them.
My initial idea is to find a tutorial for a simple game written in a programming language which does not follow the OOP paradigm (or written in an OOP language but not in an OOP way) and recreate it in an OOP way using either C# or Java (haven't yet decided). This would then allow me to make concrete comparisons between the two.
The game doesn't have to be anything complex; Tetris, Pong, etc. that sort of thing. The problem I've had so far is finding a suitable tutorial, any suggestions?
Let's say that you found source code for a game not in OOP. There are some OOP virtues that you can point out in your essay:
Organization.
Since a game has many tasks, it is a good idea to assign a responsibility to one class. This means write one class that keeps score, one class that does file access (reading and writing game state, for example), classes to represent your characters, etc. Otherwise, you will have one huge text file with thousands of lines of code. It would be a nightmare to even look at it, let alone find what you need and fix it.
Encapsulation.
This is grouping together properties and functions for better organization. We used to have a different array to store each property - (example) one array for aircraft names, one array for firepower, another array for top speed, etc. That sucks because you need to make sure that the same index across all those arrays actually describes the correct aircraft. It's better to create an Aircraft object and give it those property names. You'll then have one array that holds aircraft - no need to keep track of too many arrays.
Reusability.
As you write more games (and even other apps), you will come across the need to reuse classes. For example, you would use the same Card class in your Solitaire game as any card game you'll write in the future.
Polymorphism/Inheritance.
Say that you want to display each character - both heroes and villains in some sort of a grid. You will want both Hero and Villain to inherit Character. Character will have common properties and even a[n abstract] Display() function. You would then write the custom Display() function for Character and Villain (that access class-specific data for drawing). You then create an array of Character objects, and you may store either a Villain or Hero in each slot. When the game goes through that list to display, each item.Display() call will automatically pick the correct Display() function based on the Character's actual type. Try to do this without OOP and you'll end up with a long if-else (and probably even nested) statement and all drawing routines in one place.
That's just from the type of my head from experience in general programming that you can definitely apply in game programming. There are probably more OOP aspects than mentioned, so you may want to research. Best of everything for your essay!
You can try grabbing a (simple) TI-Basic game from TICalc, Omnimaga, or most other calculator programming websites and try to understand its code.
Try a BASIC game from this site:
http://www.atariarchives.org/basicgames/

Object Oriented Programming beyond just methods?

I have a very limited understanding of OOP.
I've been programming in .Net for a year or so, but I'm completely self taught so some of the uses of the finer points of OOP are lost on me.
Encapsulation, inheritance, abstraction, etc. I know what they mean (superficially), but what are their uses?
I've only ever used OOP for putting reusable code into methods, but I know I am missing out on a lot of functionality.
Even classes -- I've only made an actual class two or three times. Rather, I typically just include all of my methods with the MainForm.
OOP is way too involved to explain in a StackOverflow answer, but the main thrust is as follows:
Procedural programming is about writing code that performs actions on data. Object-oriented programming is about creating data that performs actions on itself.
In procedural programming, you have functions and you have data. The data is structured but passive and you write functions that perform actions on the data and resources.
In object-oriented programming, data and resources are represented by objects that have properties and methods. Here, the data is no longer passive: method is a means of instructing the data or resource to perform some action on itself.
The reason that this distinction matters is that in procedural programming, any data can be inspected or modified in any arbitrary way by any part of the program. You have to watch out for unexpected interactions between different functions that touch the same data, and you have to modify a whole lot of code if you choose to change how the data is stored or organized.
But in object-oriented programming, when encapsulation is used properly, no code except that inside the object needs to know (and thus won't become dependent on) how the data object stores its properties or mutates itself. This helps greatly to modularize your code because each object now has a well-defined interface, and so long as it continues to support that interface and other objects and free functions use it through that interface, the internal workings can be modified without risk.
Additionally, the concepts of objects, along with the use of inheritance and composition, allow you to model your data structurally in your code. If you need to have data that represents an employee, you create an Employee class. If you need to work with a printer resource, you create a Printer class. If you need to draw pushbuttons on a dialog, you create a Button class. This way, not only do you achieve greater modularization, but your modules reflect a useful model of whatever real-world things your program is supposed to be working with.
You can try this: http://homepage.mac.com/s_lott/books/oodesign.html It might help you see how to design objects.
You must go though this I can't create a clear picture of implementing OOP concepts, though I understand most of the OOP concepts. Why?
I had same scenario and I too is a self taught. I followed those steps and now I started getting a knowledge of implementation of OOP. I make my code in a more modular way better structured.
OOP can be used to model things in the real world that your application deals with. For example, a video game will probably have classes for the player, the badguys, NPCs, weapons, ammo, etc... anything that the system wants to deal with as a distinct entity.
Some links I just found that are intros to OOD:
http://accu.informika.ru/acornsig/public/articles/ood_intro.html
http://www.fincher.org/tips/General/SoftwareEngineering/ObjectOrientedDesign.shtml
http://www.softwaredesign.com/objects.html
Keeping it very brief: instead of doing operations on data a bunch of different places, you ask the object to do its thing, without caring how it does it.
Polymorphism: different objects can do different things but give them the same name, so that you can just ask any object (of a particular supertype) to do its thing by asking any object of that type to do that named operation.
I learned OOP using Turbo Pascal and found it immediately useful when I tried to model physical objects. Typical examples include a Circle object with fields for location and radius and methods for drawing, checking if a point is inside or outside, and other actions. I guess, you start thinking of classes as objects, and methods as verbs and actions. Procedural programming is like writing a script. It is often linear and it follows step by step what needs to be done. In OOP world you build an available repetoire of actions and tasks (like lego pieces), and use them to do what you want to do.
Inheritance is used common code should/can be used on multiple objects. You can easily go the other way and create way too many classes for what you need. If I am dealing with shapes do I really need two different classes for rectangles and squares, or can I use a common class with different values (fields).
Mastery comes with experience and practice. Once you start scratching your head on how to solve particular problems (especially when it comes to making your code usable again in the future), slowly you will gain the confidence to start including more and more OOP features into your code.
Good luck.

Object Oriented application problems in game development

I'll be as direct as I can concerning this problem, because there must be something I'm totally missing coming from a structured programming background.
Say I have a Player class. This Player class does things like changing its position in a game world. I call this method warp() which takes a Position class instance as a parameter to modify the internal position of the Player. This makes total sense to me in OO terms because I'm asking the player "to do" something.
The issue comes when I need to do other things in addition to just modifying the players position. For example, say I need to send that warp event to other players in an online game. Should that code also be within Player's warp() method? If not, then I would imagine declaring some kind of secondary method within say the Server class like warpPlayer(player, position). Doing this seems to reduce everything a player does to itself as a series of getters and setters, or am I just wrong here? Is this something that's totally normal? I've read countless times that a class that exposes everything as a series of getters/setters indicates a pretty poor abstraction (being used as a data structure instead of a class).
The same problem comes when you need to persist data, saving it to a file. Since "saving" a player to a file is at a different level of abstraction than the Player class, does it make sense to have a save() method within the player class? If not, declaring it externally like savePlayer(player) means that the savePlayer method would need a way to get every piece of data it needs out of the Player class, which ends up exposing the entire private implementation of the class.
Because OOP is the design methodology most used today (I assume?), there's got to be something I'm missing concerning these issues. I've discussed it with my peers who also do light development, and they too have also had these exact same issues with OOP. Maybe it's just that structured programming background that keeps us from understanding the full benefits of OOP as something more than providing methods to set and get private data so that it's changed and retrieved from one place.
Thanks in advance, and hopefully I don't sound too much like an idiot. For those who really need to know the languages involved with this design, it's Java on the server side and ActionScript 3 on the client side.
I advise you not to fear the fact, that player will be a class of getters and setters. What is object anyway? It's compilation of attributes and behaviours. In fact the more simple your classes are, the more benefits of an OOP you'll get in the development process.
I would breakdown your tasks/features into classes like that:
Player:
has hitpoints attribute
has position attribute
can walkTo(position), firing "walk" events
can healUp(hitpoints)
can takeDamage(hitpoints), firing "isHurt" event
can be checked for still living, like isAlive() method
Fighter extends Player (you should be able to cast Player to Fighter, when it's needed) :
has strength and other fighting params to calculate damage
can attack() firing "attack" event
World keeps track of all players:
listens to "walk" events (and prevents illegal movements)
listents to "isHurt" events (and checks if they are still alive)
Battle handles battles between two fighters:
constructor with two fighters as parameters (you only want to construct battle between players that are really fighting with each other)
listens to "attack" events from both players, calculates damage, and executes takeDamage method of the defending player
PlayerPersister extends AbstractPersister:
saves player's state in database
restores player's state from database
Of course, you game's breakdown will be much more complicated, but i hope this helps you to start thinking of problems in "more OOP" way :)
Don't worry too much about the Player class being a bunch of setters and getters. The Player class is a model class, and model classes tend to be like that. It's important that your model classes are small and clean, because they will be reused all over the program.
I think you should use the warpPlayer(player, position) approach you suggested. It keeps the Player class clean. If you don't want to pass the player into a function, maybe you could have a PlayerController class that contains a Player object and a warp(Position p) method. That way you can add event posting to the controller, and keep it out of the model.
As for saving the player, I'd do it by making Player implement some sort of serialisation interface. The player class is responsible for serializing and unserializing itself, and some other class would be responsible for writing the serialised data to/from a file.
I would probably consider having a Game object that keeps track of the player object. So you can do something like game.WarpPlayerTo(WarpLocations.Forest); If there are multiple players, maybe pass a player object or guid with it. I feel you can still keep it OO, and a game object would solve most of your issues I think.
The problems you are describing don't belong just to game design, but to software architecture in general. The common approach is to have a Dependency Injection (DI) and Inversion of Control (IoC) mechanisms. In short what you are trying to achieve is to be able to access a local Service of sorts from your objects, in order for example to propagate some event (e.g warp), log, etc.
Inversion of control means in short that instead of creating your objects directly, you tell some service to create them for you, that service in turn uses dependency injection to inform the objects about the services that they depend on.
If you are sharing data between different PCs for multiplayer, then a core function of the program is holding and synchronising that piece of state between the PCs. If you keep these values scattered about in many different classes, it will be difficult to synchronise.
In that case, I would advise that you design the data that needs to be synchronised between all the clients, and store that in a single class (e.g. GameState). This object will handle all the synchronisation between different PCs as well as allowing your local code to request changes to the data. It will then "drive" the game objects (Player, EnemyTank, etc) from its own state. [edit: the reason for this is that keeping this state as small as possible and transferring it efficiently between the clients will be a key part of your design. By keeping it all in one place it makes it much easier to do this, and encourages you to only put the absolute essentials in that class so that your comms don't become bloated with unnecessary data]
If you're not doing multiplayer, and you find that changing the player's position needs to update multiple objects (e.g. you want the camera to know that the player has moved so that it can follow him), then a good approach is to make the player responsible for its own position, but raise events/messages that other objects can subscribe/listen to in order to know when the player's position changes. So you move the player, and the camera gets a callback telling it that the player's position has been updated.
Another approach for this would be that the camera simply reads the player's position every frame in order to updaet itself - but this isn't as loosely coupled and flexible as using events.
Sometimes the trick to OOP is understanding what is an object, and what is functionality of an object. I think its often pretty easy for us to conceptually latch onto objects like Player, Monster, Item, etc as the "objects" in the system and then we need to create objects like Environment, Transporter, etc to link those objects together and it can get out-of-control depending on how the concepts work together, and what we need to accomplish.
The really good engineers I have worked with in the past have had a way of seeing systems as collections of objects. Sometimes in one system they would be business objects (like item, invoice, etc) and sometimes they would be objects that encapsulated processing logic (DyeInjectionProcessor, PersistanceManager) which cut across several operations and "objects" in the system. In both cases the metaphors worked for that particular system and made the overall process easier to implement, describe, and maintain.
The real power of OOP is in making things easier to express and manage in large complex systems. These are the OOP principles to target, and not worry as much whether it fits a rigid object hierarchy.
I havent worked in game design, so perhaps this advice will not work as well, in the systems I do work on and develop it has been a very beneficial change to think of OOP in terms of simplification and encapsulation rather than 1 real world object to 1 OOP class.
I'd like to expand on GrayWizardx's last paragraph to say that not all objects need to have the same level of complexity. It may very well fit your design to have objects that are simple collections of get/set properties. On the other hand, it is important to remember that objects can represent tasks or collections of tasks rather than real-world entities.
For example, a player object might not be responsible for moving the player, but instead representing its position and current state. A PlayerMovement object might contain logic for changing a player's position on screen or within the game world.
Before I start simply repeating what's already been said, I'll point towards the SOLID principles of OOP design (Aviad P. already mentioned two of them). They might provide some high-level guidelines for creating a good object model for a game.

Desigining Proper Classes

I've read all the books about why to create a class and things like "look for the nouns in your requirements" but it doesn't seem to be enough. My classes seem to me to be messy. I would like to know if there are some sort of metrics or something that I can compare my classes to and see if there well designed. If not, who is the most respected OO guru where I can get the proper class design tips?
Creating classes that start clean and then get messy is a core part of OO, that's when you refactor. Many devs try to jump to the perfect class design from the get go, in my experience that's just not possible, instead you stumble around, solving the problem and then refactor. You can harvest, base classes and interfaces as the design emerges.
if you're familiar with database design, specifically the concept of normalization, then the answer is easy: a data-centric class should represent an entity in third normal form
if that is not helpful, try this instead:
a class is a collection of data elements and the methods that operate on them
a class should have a singular responsibility, i.e. it should represent one thing in your model; if it represents more than one thing then it should be more than one class.
all of the data elements in a class should be logically associated/related to each other; if they aren't, split it into two or more classes
all of the methods in a class should operate only on their input parameters and the class's data elements - see the Law of Demeter
that's about as far as i can go with general abstract advice (without writing a long essay); you might post one of your classes for critique if you need specific advice
Try to focus on behaviour instead of structure. Objects are 'living' entities with behaviour and responsibilities. You tell them to do things. Have a look at the CRC-card approach to help you model this way.
i think Object design is as much art as it is science. It takes time and practice to understand how to design clean & elegant classes. Perhaps if you can give an example of a simple class you've designed that you aren't happy with SO users can critique and give pointers. I'm not sure there are any general answers outside of what you've already read in the texts.
The most respected OO guru i personally know is StackOverflow. Put your classnames here and i reckon you'll get a goodly number of reviews.
Classes are typically used to model concepts of the problem domain. Once you have a well-defined problem (aka the set of use cases), you will be able to identify all participants. A subset of the participants will be intrinsic to the system you are designing. Start with one big black box as your system. Keep breaking it down, as and when you have more information. When you have a level where they can no longer be broken down (into concepts in your problem domain), you start getting your classes.
But then, this is a subjective view of a non-guru. I'd suggest a pinch of salt to the menu.
Metrics? Not so's that you'd trust them.
Are your classes doing the job of getting the program working and keeping it maintainable through multiple revisions?
If yes, you're doing ok.
If no, ask yourself why not, and then change what isn't working.