How to use glib-compile-resources with CMake - cmake

As any GTK project grows, GTK applications tend to be bundled with gresources to separate out code and UI design. This is very useful because UI/UX designers don't need to know code in order to... well design and ultimately contribute their skills and effort to the project.
Not only designers but programmers too benefit a lot! Because code becomes heavily "logic or problem solving" instead of maintaining both UI and logic code together in one single file.
However, to compile our GResource we need glib-compile-resources utility tool. The command usually goes like this:
glib-compile-resources --generate-source --target=<output-file> <input-file>
But how do I create a build script that compiles our gresource files and link it with our target project? I'm still a newbie learning CMake and I've gotten far enough to know what a target is, how to set a variable, how to link a target, and also how to pull in the required GTK packages for linking. But I don't have any clue how to proceed ahead with solving this :(

A solution to this is using add_custom_command() to compile your gresources. But first here's a breakdown of what you need for your CMake script:
Pull in glib-compile-resources as executable program - find_program()
Define how to compile your gresource - add_custom_command()
Then define your custom target - add_custom_target()
Tell CMake that resource is a generated file - set_source_files_properties()
Finally, add your custom target to your project target as a dependency - add_dependencies()
Here's a sample CMake script:
cmake_minimum_required(VERSION 3.15)
project(dummy)
# Step 1:
find_program(GLIB_COMPILE_RESOURCES NAMES glib-compile-resources REQUIRED)
set(GRESOURCE_C test.gresource.c)
set(GRESOURCE_XML test.gresource.xml)
# Step 2:
add_custom_command(
OUTPUT ${GRESOURCE_C}
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
COMMAND ${GLIB_COMPILE_RESOURCES}
ARGS
--target=${CMAKE_CURRENT_BINARY_DIR}/${GRESOURCE_C}
${GRESOURCE_XML}
VERBATIM
MAIN_DEPENDENCY ${GRESOURCE_XML}
DEPENDS
for.glade
bar.glade
)
# Step 3:
add_custom_target(
dummy-resource
DEPENDS ${CMAKE_CURRENT_BINARY_DIR}/${GRESOURCE_C}
)
# Step 4:
add_executable(${PROJECT_NAME} dummy.c ${CMAKE_CURRENT_BINARY_DIR}/${GRESOURCE_C})
set_source_files_properties(
${CMAKE_CURRENT_BINARY_DIR}/${GRESOURCE_C}
PROPERTIES GENERATED TRUE
)
# Step 5:
add_dependencies(${PROJECT_NAME} dummy-resource)
Brief explanation
add_custom_command()
OUTPUT - This is your generated resource file
WORKING_DIRECTORY - Where your XML and glade files are located
VERBATIM - Makes sure our COMMAND receives ARGS unchanged
MAIN_DEPENDENCY - for glib-compile-resources <input-file>
DEPENDS - Your glade file(s). If any of the file changes then your target build is triggered :)
add_custom_target()
dummy-resource - That's your custom target name
DEPENDS - The output your custom target needs in order to trigger your custom command
set_source_files_properties()
When you first generate your build files using cmake command, your resource file isn't generated yet. So CMake will run into error because it doesn't know where your resource file is or where it's coming from. We need to tell CMake "Don't fail, our resource file is generated later"
Use --generate-dependencies instead of hard-coding
Now you might notice we are duplicating our effort ie., when we add new glade files or remove existing ones (or any other resources such as icon, sounds, css files, etc) we have to edit both our XML and CMake script files. glib-compile-resources already provide dependency generation so we can use that in our CMake script and make it smart.
The trick is to change your .xml file to .xml.in as a configuration file. So when that configuration file changes, you call glib tool with --generate-dependencies, get new dependency output values, and send that to add_custom_command(... DEPENDS). Now we have an intelligent CMake :)
If you want to approach this method then the below post would be really helpful:
Use list as dependencies on add_custom_command
Good luck :)

Related

CMake: How to set dependency from executable to custom command [duplicate]

I'm trying to use add_custom_command to generate a file during the build. The command never seemed to be run, so I made this test file.
cmake_minimum_required( VERSION 2.6 )
add_custom_command(
OUTPUT hello.txt
COMMAND touch hello.txt
DEPENDS hello.txt
)
I tried running:
cmake .
make
And hello.txt was not generated. What have I done wrong?
The add_custom_target(run ALL ... solution will work for simple cases when you only have one target you're building, but breaks down when you have multiple top level targets, e.g. app and tests.
I ran into this same problem when I was trying to package up some test data files into an object file so my unit tests wouldn't depend on anything external. I solved it using add_custom_command and some additional dependency magic with set_property.
add_custom_command(
OUTPUT testData.cpp
COMMAND reswrap
ARGS testData.src > testData.cpp
DEPENDS testData.src
)
set_property(SOURCE unit-tests.cpp APPEND PROPERTY OBJECT_DEPENDS testData.cpp)
add_executable(app main.cpp)
add_executable(tests unit-tests.cpp)
So now testData.cpp will generated before unit-tests.cpp is compiled, and any time testData.src changes. If the command you're calling is really slow you get the added bonus that when you build just the app target you won't have to wait around for that command (which only the tests executable needs) to finish.
It's not shown above, but careful application of ${PROJECT_BINARY_DIR}, ${PROJECT_SOURCE_DIR} and include_directories() will keep your source tree clean of generated files.
Add the following:
add_custom_target(run ALL
DEPENDS hello.txt)
If you're familiar with makefiles, this means:
all: run
run: hello.txt
The problem with two existing answers is that they either make the dependency global (add_custom_target(name ALL ...)), or they assign it to a specific, single file (set_property(...)) which gets obnoxious if you have many files that need it as a dependency. Instead what we want is a target that we can make a dependency of another target.
The way to do this is to use add_custom_command to define the rule, and then add_custom_target to define a new target based on that rule. Then you can add that target as a dependency of another target via add_dependencies.
# this defines the build rule for some_file
add_custom_command(
OUTPUT some_file
COMMAND ...
)
# create a target that includes some_file, this gives us a name that we can use later
add_custom_target(
some_target
DEPENDS some_file
)
# then let's suppose we're creating a library
add_library(some_library some_other_file.c)
# we can add the target as a dependency, and it will affect only this library
add_dependencies(some_library some_target)
The advantages of this approach:
some_target is not a dependency for ALL, which means you only build it when it's required by a specific target. (Whereas add_custom_target(name ALL ...) would build it unconditionally for all targets.)
Because some_target is a dependency for the library as a whole, it will get built before all of the files in that library. That means that if there are many files in the library, we don't have to do set_property on every single one of them.
If we add DEPENDS to add_custom_command then it will only get rebuilt when its inputs change. (Compare this to the approach that uses add_custom_target(name ALL ...) where the command gets run on every build regardless of whether it needs to or not.)
For more information on why things work this way, see this blog post: https://samthursfield.wordpress.com/2015/11/21/cmake-dependencies-between-targets-and-files-and-custom-commands/
This question is pretty old, but even if I follow the suggested recommendations, it does not work for me (at least not every time).
I am using Android Studio and I need to call cMake to build C++ library. It works fine until I add the code to run my custom script (in fact, at the moment I try to run 'touch', as in the example above).
First of,
add_custom_command
does not work at all.
I tried
execute_process (
COMMAND touch hello.txt
)
it works, but not every time!
I tried to clean the project, remove the created file(s) manually, same thing.
Tried cMake versions:
3.10.2
3.18.1
3.22.1
when they work, they produce different results, depending on cMake version, one file or several. This is not that important as long as they work, but that's the issue.
Can somebody shed light on this mystery?

Cmake is failing to call a custom command [duplicate]

I'm trying to use add_custom_command to generate a file during the build. The command never seemed to be run, so I made this test file.
cmake_minimum_required( VERSION 2.6 )
add_custom_command(
OUTPUT hello.txt
COMMAND touch hello.txt
DEPENDS hello.txt
)
I tried running:
cmake .
make
And hello.txt was not generated. What have I done wrong?
The add_custom_target(run ALL ... solution will work for simple cases when you only have one target you're building, but breaks down when you have multiple top level targets, e.g. app and tests.
I ran into this same problem when I was trying to package up some test data files into an object file so my unit tests wouldn't depend on anything external. I solved it using add_custom_command and some additional dependency magic with set_property.
add_custom_command(
OUTPUT testData.cpp
COMMAND reswrap
ARGS testData.src > testData.cpp
DEPENDS testData.src
)
set_property(SOURCE unit-tests.cpp APPEND PROPERTY OBJECT_DEPENDS testData.cpp)
add_executable(app main.cpp)
add_executable(tests unit-tests.cpp)
So now testData.cpp will generated before unit-tests.cpp is compiled, and any time testData.src changes. If the command you're calling is really slow you get the added bonus that when you build just the app target you won't have to wait around for that command (which only the tests executable needs) to finish.
It's not shown above, but careful application of ${PROJECT_BINARY_DIR}, ${PROJECT_SOURCE_DIR} and include_directories() will keep your source tree clean of generated files.
Add the following:
add_custom_target(run ALL
DEPENDS hello.txt)
If you're familiar with makefiles, this means:
all: run
run: hello.txt
The problem with two existing answers is that they either make the dependency global (add_custom_target(name ALL ...)), or they assign it to a specific, single file (set_property(...)) which gets obnoxious if you have many files that need it as a dependency. Instead what we want is a target that we can make a dependency of another target.
The way to do this is to use add_custom_command to define the rule, and then add_custom_target to define a new target based on that rule. Then you can add that target as a dependency of another target via add_dependencies.
# this defines the build rule for some_file
add_custom_command(
OUTPUT some_file
COMMAND ...
)
# create a target that includes some_file, this gives us a name that we can use later
add_custom_target(
some_target
DEPENDS some_file
)
# then let's suppose we're creating a library
add_library(some_library some_other_file.c)
# we can add the target as a dependency, and it will affect only this library
add_dependencies(some_library some_target)
The advantages of this approach:
some_target is not a dependency for ALL, which means you only build it when it's required by a specific target. (Whereas add_custom_target(name ALL ...) would build it unconditionally for all targets.)
Because some_target is a dependency for the library as a whole, it will get built before all of the files in that library. That means that if there are many files in the library, we don't have to do set_property on every single one of them.
If we add DEPENDS to add_custom_command then it will only get rebuilt when its inputs change. (Compare this to the approach that uses add_custom_target(name ALL ...) where the command gets run on every build regardless of whether it needs to or not.)
For more information on why things work this way, see this blog post: https://samthursfield.wordpress.com/2015/11/21/cmake-dependencies-between-targets-and-files-and-custom-commands/
This question is pretty old, but even if I follow the suggested recommendations, it does not work for me (at least not every time).
I am using Android Studio and I need to call cMake to build C++ library. It works fine until I add the code to run my custom script (in fact, at the moment I try to run 'touch', as in the example above).
First of,
add_custom_command
does not work at all.
I tried
execute_process (
COMMAND touch hello.txt
)
it works, but not every time!
I tried to clean the project, remove the created file(s) manually, same thing.
Tried cMake versions:
3.10.2
3.18.1
3.22.1
when they work, they produce different results, depending on cMake version, one file or several. This is not that important as long as they work, but that's the issue.
Can somebody shed light on this mystery?

add_custom_command() not compiling my project glib resources [duplicate]

I'm trying to use add_custom_command to generate a file during the build. The command never seemed to be run, so I made this test file.
cmake_minimum_required( VERSION 2.6 )
add_custom_command(
OUTPUT hello.txt
COMMAND touch hello.txt
DEPENDS hello.txt
)
I tried running:
cmake .
make
And hello.txt was not generated. What have I done wrong?
The add_custom_target(run ALL ... solution will work for simple cases when you only have one target you're building, but breaks down when you have multiple top level targets, e.g. app and tests.
I ran into this same problem when I was trying to package up some test data files into an object file so my unit tests wouldn't depend on anything external. I solved it using add_custom_command and some additional dependency magic with set_property.
add_custom_command(
OUTPUT testData.cpp
COMMAND reswrap
ARGS testData.src > testData.cpp
DEPENDS testData.src
)
set_property(SOURCE unit-tests.cpp APPEND PROPERTY OBJECT_DEPENDS testData.cpp)
add_executable(app main.cpp)
add_executable(tests unit-tests.cpp)
So now testData.cpp will generated before unit-tests.cpp is compiled, and any time testData.src changes. If the command you're calling is really slow you get the added bonus that when you build just the app target you won't have to wait around for that command (which only the tests executable needs) to finish.
It's not shown above, but careful application of ${PROJECT_BINARY_DIR}, ${PROJECT_SOURCE_DIR} and include_directories() will keep your source tree clean of generated files.
Add the following:
add_custom_target(run ALL
DEPENDS hello.txt)
If you're familiar with makefiles, this means:
all: run
run: hello.txt
The problem with two existing answers is that they either make the dependency global (add_custom_target(name ALL ...)), or they assign it to a specific, single file (set_property(...)) which gets obnoxious if you have many files that need it as a dependency. Instead what we want is a target that we can make a dependency of another target.
The way to do this is to use add_custom_command to define the rule, and then add_custom_target to define a new target based on that rule. Then you can add that target as a dependency of another target via add_dependencies.
# this defines the build rule for some_file
add_custom_command(
OUTPUT some_file
COMMAND ...
)
# create a target that includes some_file, this gives us a name that we can use later
add_custom_target(
some_target
DEPENDS some_file
)
# then let's suppose we're creating a library
add_library(some_library some_other_file.c)
# we can add the target as a dependency, and it will affect only this library
add_dependencies(some_library some_target)
The advantages of this approach:
some_target is not a dependency for ALL, which means you only build it when it's required by a specific target. (Whereas add_custom_target(name ALL ...) would build it unconditionally for all targets.)
Because some_target is a dependency for the library as a whole, it will get built before all of the files in that library. That means that if there are many files in the library, we don't have to do set_property on every single one of them.
If we add DEPENDS to add_custom_command then it will only get rebuilt when its inputs change. (Compare this to the approach that uses add_custom_target(name ALL ...) where the command gets run on every build regardless of whether it needs to or not.)
For more information on why things work this way, see this blog post: https://samthursfield.wordpress.com/2015/11/21/cmake-dependencies-between-targets-and-files-and-custom-commands/
This question is pretty old, but even if I follow the suggested recommendations, it does not work for me (at least not every time).
I am using Android Studio and I need to call cMake to build C++ library. It works fine until I add the code to run my custom script (in fact, at the moment I try to run 'touch', as in the example above).
First of,
add_custom_command
does not work at all.
I tried
execute_process (
COMMAND touch hello.txt
)
it works, but not every time!
I tried to clean the project, remove the created file(s) manually, same thing.
Tried cMake versions:
3.10.2
3.18.1
3.22.1
when they work, they produce different results, depending on cMake version, one file or several. This is not that important as long as they work, but that's the issue.
Can somebody shed light on this mystery?

Creating a library in CMake depending on source files not available when generating build files

I have a CMake configuration file building two libraries:
a third-party library (here called ThirdPartyLib) containing a real-time OS / board support package from a supplier. It is built outside CMake using the autotools toolchain.
an extended version of the former library (here called ExtendedThirdPartyLib)
Unfortunately, some source code that I need (various tools) are not built in the ordinary build script for (1). Since I don't want to mess with the suppliers build script I want to add another library (2), building the missing files and thus extending the library from the supplier.
I want to able to do something like this in CMakeFiles.txt:
cmake_minimum_required(VERSION 3.2)
project(bsp)
include(ExternalProject)
ExternalProject_Add(
ThirdPartyLib
URL <http://some.url/bsp.tar.bz2
BUILD_COMMAND make -C ../external/ThirdPartyLib/src
)
set_target_properties(ThirdPartyLib PROPERTIES EXCLUDE_FROM_ALL TRUE)
add_library(ExtendedThirdPartyLib
${CMAKE_CURRENT_BINARY_DIR}/some/path/missing_file1.c
${CMAKE_CURRENT_BINARY_DIR}/some/path/missing_file2.c
)
add_dependencies(ExtendedThirdPartyLib ThirdPartyLib)
target_include_directories(ExtendedThirdPartyLib PUBLIC
${CMAKE_CURRENT_BINARY_DIR}/some/path/include
)
target_link_libraries(ExtendedThirdPartyLib ThirdPartyLib)
The problem here is that the path to missing_file1.c and missing_file2.c are not valid when CMake is generating the build files (they are extracted from the tarball from the supplier). CMake exits with an error output saying: "Cannot find source file".
Is there a neat way to make this work? I.e. is it possible to convince CMake that certain non-existant input files will exist when building of the library begins? Or is there any other recommended way to solve this issue?
(I have temporary made local copies of the files I need to build from the suppliers tarball, but that is of course not a good solution. If those files are changed in future versions of the suppliers package and I forget to overwrite my local copies it could be a horrible mess...
Another "solution" would be to create a small makefile outside CMake and use another ExternalProject_Add in the CMakeFiles.txt somehow. But that's not a good solution either, e.g. if compile and linker flags are modified I need to remember to change the makefile too.)
Personally, I dislike the ExternalProject_Add command, because it does way too many things for my taste, but I've digressed.
What if you do something like this, where bar is simulating your ExtendedThirdPartyLib target, since it depends on generated files
cmake_minimum_required(VERSION 3.11)
project(lol C)
set(SOURCES lol.c) # only this file exists
add_library(lol ${SOURCES})
set(FOO_FILES "foo1.c" "foo2.c")
add_custom_command(OUTPUT ${FOO_FILES}
COMMAND ${CMAKE_COMMAND} -E touch ${FOO_FILES}
WORKING_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}"
COMMENT "Creating ${FOO_FILES}"
VERBATIM)
add_custom_target(foo DEPENDS ${FOO_FILES})
add_library(bar ${FOO_FILES})
add_dependencies(bar foo)
target_link_libraries(lol bar)
The whole approach hinges on the fact that the method, where produced/generated files are procured, is explicitly defined via the custom command and associated custom target.
You should modify the custom command to extract the required files (e.g. could even call some external script) from the tarball (which might require downloading with curl or something similar).

CMake add_custom_command not being run

I'm trying to use add_custom_command to generate a file during the build. The command never seemed to be run, so I made this test file.
cmake_minimum_required( VERSION 2.6 )
add_custom_command(
OUTPUT hello.txt
COMMAND touch hello.txt
DEPENDS hello.txt
)
I tried running:
cmake .
make
And hello.txt was not generated. What have I done wrong?
The add_custom_target(run ALL ... solution will work for simple cases when you only have one target you're building, but breaks down when you have multiple top level targets, e.g. app and tests.
I ran into this same problem when I was trying to package up some test data files into an object file so my unit tests wouldn't depend on anything external. I solved it using add_custom_command and some additional dependency magic with set_property.
add_custom_command(
OUTPUT testData.cpp
COMMAND reswrap
ARGS testData.src > testData.cpp
DEPENDS testData.src
)
set_property(SOURCE unit-tests.cpp APPEND PROPERTY OBJECT_DEPENDS testData.cpp)
add_executable(app main.cpp)
add_executable(tests unit-tests.cpp)
So now testData.cpp will generated before unit-tests.cpp is compiled, and any time testData.src changes. If the command you're calling is really slow you get the added bonus that when you build just the app target you won't have to wait around for that command (which only the tests executable needs) to finish.
It's not shown above, but careful application of ${PROJECT_BINARY_DIR}, ${PROJECT_SOURCE_DIR} and include_directories() will keep your source tree clean of generated files.
Add the following:
add_custom_target(run ALL
DEPENDS hello.txt)
If you're familiar with makefiles, this means:
all: run
run: hello.txt
The problem with two existing answers is that they either make the dependency global (add_custom_target(name ALL ...)), or they assign it to a specific, single file (set_property(...)) which gets obnoxious if you have many files that need it as a dependency. Instead what we want is a target that we can make a dependency of another target.
The way to do this is to use add_custom_command to define the rule, and then add_custom_target to define a new target based on that rule. Then you can add that target as a dependency of another target via add_dependencies.
# this defines the build rule for some_file
add_custom_command(
OUTPUT some_file
COMMAND ...
)
# create a target that includes some_file, this gives us a name that we can use later
add_custom_target(
some_target
DEPENDS some_file
)
# then let's suppose we're creating a library
add_library(some_library some_other_file.c)
# we can add the target as a dependency, and it will affect only this library
add_dependencies(some_library some_target)
The advantages of this approach:
some_target is not a dependency for ALL, which means you only build it when it's required by a specific target. (Whereas add_custom_target(name ALL ...) would build it unconditionally for all targets.)
Because some_target is a dependency for the library as a whole, it will get built before all of the files in that library. That means that if there are many files in the library, we don't have to do set_property on every single one of them.
If we add DEPENDS to add_custom_command then it will only get rebuilt when its inputs change. (Compare this to the approach that uses add_custom_target(name ALL ...) where the command gets run on every build regardless of whether it needs to or not.)
For more information on why things work this way, see this blog post: https://samthursfield.wordpress.com/2015/11/21/cmake-dependencies-between-targets-and-files-and-custom-commands/
This question is pretty old, but even if I follow the suggested recommendations, it does not work for me (at least not every time).
I am using Android Studio and I need to call cMake to build C++ library. It works fine until I add the code to run my custom script (in fact, at the moment I try to run 'touch', as in the example above).
First of,
add_custom_command
does not work at all.
I tried
execute_process (
COMMAND touch hello.txt
)
it works, but not every time!
I tried to clean the project, remove the created file(s) manually, same thing.
Tried cMake versions:
3.10.2
3.18.1
3.22.1
when they work, they produce different results, depending on cMake version, one file or several. This is not that important as long as they work, but that's the issue.
Can somebody shed light on this mystery?