What is the most reliable method to optimize linear objective function with nonlinear constraints and Why? - optimization

I currently solve the following problem:
Basically, this problem is equivalent to find the confidence interval for logistic regression. The objective function is linear (no second derivative), meanwhile, the constraint is non-linear. Specifically, I used n = 1, alpha = 0.05, theta = logit of p where p = [0,1] (for detail, please see binomial distribution). Thus, I have a closed-form solution for the gradient and jacobian for objective and constraints respectively.
In R, I first tried the alabama::auglag function which used augmented Lagrangian method with BFGS (as a default) and nloptr::auglag function which used augmented Lagrangian method with SLSQP (i.e. SLSQP as a local minimizer). Although they were able to find the (global) minimizer most time, sometimes they failed and produced a far-off solution.
After all, I could obtain the best (most stable) result using SLSQP method (nloptr::nloptr with algorithm=NLOPT_LD_SLSQP).
Now, I have a question of why SLSQP produced better result in this setting than the first two methods and why the first two methods (augmented Lagrangian with BFGS and SLSQP as a local optimizer) did not perform well.
Another question is, considering my problem setting, what would be the best method to find the optimizer?
Any comments and suggestions would be much appreciated.
Thanks.

Related

Different optimization behavior using np.random-normal instead of tf.random_normal

I’m looking into the code from https://github.com/AshishBora/csgm and experience some strange behavior when using np.random.normal instead of tf.random_normal as initializing of a tf.Variable. More concrete:
Instead of
z = tf.Variable(tf.random_normal((batch_size, hparams.n_z)), name='z')
I have
# in mnist_vae/src/model_def.py, line 74
z = tf.Variable(np.random.normal(size=(batch_size,
hparams.n_z)).astype('float32'), name='z')
z is the variable, which is optimized via Adam optimizer with respect to an objective.
For a little bit background: There is a pre-trained neural network G, whose input z is drawn from a standard normal distribution using tf.random_normal. For a given z*, one wants to solve ẑ= argmin_z ||AG(z)-AG(z*)|| and check the reconstruction error ||G(ẑ)-G(z*)||. The outcoming minimal value c(z*)=||G(ẑ)-G(z*)|| is for several different z* quite stable around a value c1. Now, I wasn’t quite sure whether the optimization (Adam optimizer) might use the information that z comes from a standard normal distribution. So I replaced the tf.random_normal by a np.random_normal in the hope that the optimizer can’t use the information then. (see the code above)
Unfortunately, the results are indeed different using np.random.normal: c(z*)=||G(ẑ)-G(z*)|| is for several different z* stable around a different value c2 (not c1). How can one explain this? Is it really that the optimizer uses the information of the normal distribution (e.g. as loglikelihood prior) in the optimization? My feeling says no, since it's only the initialization.
The code is given in https://github.com/AshishBora/csgm

Machine learning: why the cost function does not need to be derivable?

I was playing around with Tensorflow creating a customized loss function and this question about general machine learning arose to my head.
My understanding is that the optimization algorithm needs a derivable cost function to find/approach a minimum, however we can use functions that are non-derivable such as the absolute function (there is no derivative when x=0). A more extreme example, I defined my cost function like this:
def customLossFun(x,y):
return tf.sign(x)
and I expected an error when running the code, but it actually worked (it didn't learn anything but it didn't crash).
Am I missing something?
You're missing the fact that the gradient of the sign function is somewhere manually defined in the Tensorflow source code.
As you can see here:
def _SignGrad(op, _):
"""Returns 0."""
x = op.inputs[0]
return array_ops.zeros(array_ops.shape(x), dtype=x.dtype)
the gradient of tf.sign is defined to be always zero. This, of course, is the gradient where the derivate exists, hence everywhere but not in zero.
The tensorflow authors decided to do not check if the input is zero and throw an exception in that specific case
In order to prevent TensorFlow from throwing an error, the only real requirement is that you cost function evaluates to a number for any value of your input variables. From a purely "will it run" perspective, it doesn't know/care about the form of the function its trying to minimize.
In order for your cost function to provide you a meaningful result when TensorFlow uses it to train a model, it additionally needs to 1) get smaller as your model does better and 2) be bounded from below (i.e. it can't go to negative infinity). It's not generally necessary for it to be smooth (e.g. abs(x) has a kink where the sign flips). Tensorflow is always able to compute gradients at any location using automatic differentiation (https://en.wikipedia.org/wiki/Automatic_differentiation, https://www.tensorflow.org/versions/r0.12/api_docs/python/train/gradient_computation).
Of course, those gradients are of more use if you've chose a meaningful cost function isn't isn't too flat.
Ideally, the cost function needs to be smooth everywhere to apply gradient based optimization methods (SGD, Momentum, Adam, etc). But nothing's going to crash if it's not, you can just have issues with convergence to a local minimum.
When the function is non-differentiable at a certain point x, it's possible to get large oscillations if the neural network converges to this x. E.g., if the loss function is tf.abs(x), it's possible that the network weights are mostly positive, so the inference x > 0 at all times, so the network won't notice tf.abs. However, it's more likely that x will bounce around 0, so that the gradient is arbitrarily positive and negative. If the learning rate is not decaying, the optimization won't converge to the local minimum, but will bound around it.
In your particular case, the gradient is zero all the time, so nothing's going to change at all.
If it didn't learn anything, what have you gained ? Your loss function is differentiable almost everywhere but it is flat almost anywhere so the minimizer can't figure out the direction towards the minimum.
If you start out with a positive value, it will most likely be stuck at a random value on the positive side even though the minima on the left side are better (have a lower value).
Tensorflow can be used to do calculations in general and it provides a mechanism to automatically find the derivative of a given expression and can do so across different compute platforms (CPU, GPU) and distributed over multiple GPUs and servers if needed.
But what you implement in Tensorflow does not necessarily have to be a goal function to be minimized. You could use it e.g. to throw random numbers and perform Monte Carlo integration of a given function.

Errors to fit parameters of scipy.optimize

I use the scipy.optimize.minimize ( https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html ) function with method='L-BFGS-B.
An example of what it returns is here above:
fun: 32.372210618549758
hess_inv: <6x6 LbfgsInvHessProduct with dtype=float64>
jac: array([ -2.14583906e-04, 4.09272616e-04, -2.55795385e-05,
3.76587650e-05, 1.49213975e-04, -8.38440428e-05])
message: 'CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH'
nfev: 420
nit: 51
status: 0
success: True
x: array([ 0.75739412, -0.0927572 , 0.11986434, 1.19911266, 0.27866406,
-0.03825225])
The x value correctly contains the fitted parameters. How do I compute the errors associated to those parameters?
TL;DR: You can actually place an upper bound on how precisely the minimization routine has found the optimal values of your parameters. See the snippet at the end of this answer that shows how to do it directly, without resorting to calling additional minimization routines.
The documentation for this method says
The iteration stops when (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= ftol.
Roughly speaking, the minimization stops when the value of the function f that you're minimizing is minimized to within ftol of the optimum. (This is a relative error if f is greater than 1, and absolute otherwise; for simplicity I'll assume it's an absolute error.) In more standard language, you'll probably think of your function f as a chi-squared value. So this roughly suggests that you would expect
Of course, just the fact that you're applying a minimization routine like this assumes that your function is well behaved, in the sense that it's reasonably smooth and the optimum being found is well approximated near the optimum by a quadratic function of the parameters xi:
where Δxi is the difference between the found value of parameter xi and its optimal value, and Hij is the Hessian matrix. A little (surprisingly nontrivial) linear algebra gets you to a pretty standard result for an estimate of the uncertainty in any quantity X that's a function of your parameters xi:
which lets us write
That's the most useful formula in general, but for the specific question here, we just have X = xi, so this simplifies to
Finally, to be totally explicit, let's say you've stored the optimization result in a variable called res. The inverse Hessian is available as res.hess_inv, which is a function that takes a vector and returns the product of the inverse Hessian with that vector. So, for example, we can display the optimized parameters along with the uncertainty estimates with a snippet like this:
ftol = 2.220446049250313e-09
tmp_i = np.zeros(len(res.x))
for i in range(len(res.x)):
tmp_i[i] = 1.0
hess_inv_i = res.hess_inv(tmp_i)[i]
uncertainty_i = np.sqrt(max(1, abs(res.fun)) * ftol * hess_inv_i)
tmp_i[i] = 0.0
print('x^{0} = {1:12.4e} ± {2:.1e}'.format(i, res.x[i], uncertainty_i))
Note that I've incorporated the max behavior from the documentation, assuming that f^k and f^{k+1} are basically just the same as the final output value, res.fun, which really ought to be a good approximation. Also, for small problems, you can just use np.diag(res.hess_inv.todense()) to get the full inverse and extract the diagonal all at once. But for large numbers of variables, I've found that to be a much slower option. Finally, I've added the default value of ftol, but if you change it in an argument to minimize, you would obviously need to change it here.
One approach to this common problem is to use scipy.optimize.leastsq after using minimize with 'L-BFGS-B' starting from the solution found with 'L-BFGS-B'. That is, leastsq will (normally) include and estimate of the 1-sigma errors as well as the solution.
Of course, that approach makes several assumption, including that leastsq can be used and may be appropriate for solving the problem. From a practical view, this requires the objective function return an array of residual values with at least as many elements as variables, not a cost function.
You may find lmfit (https://lmfit.github.io/lmfit-py/) useful here: It supports both 'L-BFGS-B' and 'leastsq' and gives a uniform wrapper around these and other minimization methods, so that you can use the same objective function for both methods (and specify how to convert the residual array into the cost function). In addition, parameter bounds can be used for both methods. This makes it very easy to first do a fit with 'L-BFGS-B' and then with 'leastsq', using the values from 'L-BFGS-B' as starting values.
Lmfit also provides methods to more explicitly explore confidence limits on parameter values in more detail, in case you suspect the simple but fast approach used by leastsq might be insufficient.
It really depends what you mean by "errors". There is no general answer to your question, because it depends on what you're fitting and what assumptions you're making.
The easiest case is one of the most common: when the function you are minimizing is a negative log-likelihood. In that case the inverse of the hessian matrix returned by the fit (hess_inv) is the covariance matrix describing the Gaussian approximation to the maximum likelihood.The parameter errors are the square root of the diagonal elements of the covariance matrix.
Beware that if you are fitting a different kind of function or are making different assumptions, then that doesn't apply.

how tensorflow handles complex gradient?

Let z is a complex variable, C(z) is its conjugation.
In complex analysis theory, the derivative of C(z) w.r.t z don't exist. But in tesnsorflow, we can calculate dC(z)/dz and the result is just 1.
Here is an example:
x = tf.placeholder('complex64',(2,2))
y = tf.reduce_sum(tf.conj(x))
z = tf.gradients(y,x)
sess = tf.Session()
X = np.random.rand(2,2)+1.j*np.random.rand(2,2)
X = X.astype('complex64')
Z = sess.run(z,{x:X})[0]
The input X is
[[0.17014372+0.71475762j 0.57455420+0.00144318j]
[0.57871044+0.61303568j 0.48074263+0.7623235j ]]
and the result Z is
[[1.-0.j 1.-0.j]
[1.-0.j 1.-0.j]]
I don't understand why the gradient is set to be 1?
And I want to know how tensorflow handles the complex gradients in general.
How?
The equation used by Tensorflow for the gradient is:
Where the '*' means conjugate.
When using the definition of the partial derivatives wrt z and z* it uses Wirtinger Calculus. Wirtinger calculus enables to calculate the derivative wrt a complex variable for non-holomorphic functions. The Wirtinger definition is:
Why this definition?
When using for example Complex-Valued Neural Networks (CVNN) the gradients will be used over non-holomorphic, real-valued scalar function of one or several complex variables, tensorflow definition of a gradient can then be written as:
This definition corresponds with the literature of CVNN like for example chapter 4 section 4.3 of this book or Amin et al. (between countless examples).
Bit late, but I came across this issue recently too.
The key point is that TensorFlow defines the "gradient" of a complex-valued function f(z) of a complex variable as "the gradient of the real map F: (x,y) -> Re(f(x+iy)), expressed as a complex number" (the gradient of that real map is a vector in R^2, so we can express it as a complex number in the obvious way).
Presumably the reason for that definition is that in TF one is usually concerned with gradients for the purpose of running gradient descent on a loss function, and in particular for identifying the direction of maximum increase/decrease of that loss function. Using the above definition of gradient means that a complex-valued function of complex variables can be used as a loss function in a standard gradient descent algorithm, and the result will be that the real part of the function gets minimised (which seems to me a somewhat reasonable interpretation of "optimise this complex-valued function").
Now, to your question, an equivalent way to write that definition of gradient is
gradient(f) := dF/dx + idF/dy = conj(df/dz + dconj(f)/dz)
(you can easily verify that using the definition of d/dz). That's how TensorFlow handles complex gradients. As for the case of f(z):=conj(z), we have df/dz=0 (as you mention) and dconj(f)/dz=1, giving gradient(f)=1.
I wrote up a longer explanation here, if you're interested: https://github.com/tensorflow/tensorflow/issues/3348#issuecomment-512101921

What is the best way to implement weight constraints in TensorFlow?

Suppose we have weights
x = tf.Variable(np.random.random((5,10)))
cost = ...
And we use the GD optimizer:
upds = tf.train.GradientDescentOptimizer(lr).minimize(cost)
session.run(upds)
How can we implement for example non-negativity on weights?
I tried clipping them:
upds = tf.train.GradientDescentOptimizer(lr).minimize(cost)
session.run(upds)
session.run(tf.assign(x, tf.clip_by_value(x, 0, np.infty)))
But this slows down my training by a factor of 50.
Does anybody know a good way to implement such constraints on the weights in TensorFlow?
P.S.: in the equivalent Theano algorithm, I had
T.clip(x, 0, np.infty)
and it ran smoothly.
You can take the Lagrangian approach and simply add a penalty for features of the variable you don't want.
e.g. To encourage theta to be non-negative, you could add the following to the optimizer's objective function.
added_loss = -tf.minimum( tf.reduce_min(theta),0)
If any theta are negative, then add2loss will be positive, otherwise zero. Scaling that to a meaningful value is left as an exercise to the reader. Scaling too little will not exert enough pressure. Too much may make things unstable.
As of TensorFlow 1.4, there is a new argument to tf.get_variable that allows to pass a constraint function that is applied after the update of the optimizer. Here is an example that enforces a non-negativity constraint:
with tf.variable_scope("MyScope"):
v1 = tf.get_variable("v1", …, constraint=lambda x: tf.clip_by_value(x, 0, np.infty))
constraint: An optional projection function to be applied to the
variable
after being updated by an Optimizer (e.g. used to implement norm
constraints or value constraints for layer weights). The function must
take as input the unprojected Tensor representing the value of the
variable and return the Tensor for the projected value
(which must have the same shape). Constraints are not safe to
use when doing asynchronous distributed training.
By running
sess.run(tf.assign(x, tf.clip_by_value(x, 0, np.infty)))
you are consistently adding nodes to the graph and making it slower and slower.
Actually you may just define a clip_op when building the graph and run it each time after updating the weights:
# build the graph
x = tf.Variable(np.random.random((5,10)))
loss = ...
train_op = tf.train.GradientDescentOptimizer(lr).minimize(loss)
clip_op = tf.assign(x, tf.clip(x, 0, np.infty))
# train
sess.run(train_op)
sess.run(clip_op)
I recently had this problem as well. I discovered that you can import keras which has nice weight constraint functions as use them directly in the kernen constraint in tensorflow. Here is an example of my code. You can do similar things with kernel regularizer
from keras.constraints import non_neg
conv1 = tf.layers.conv2d(
inputs=features['x'],
filters=32,
kernel_size=[5,5],
strides = 2,
padding='valid',
activation=tf.nn.relu,
kernel_regularizer=None,
kernel_constraint=non_neg(),
use_bias=False)
There is a practical solution: Your cost function can be written by you, to put high cost onto negative weights. I did this in a matrix factorization model in TensorFlow with python, and it worked well enough. Right? I mean it's obvious. But nobody else mentioned it so here you go. EDIT: I just saw that Mark Borderding also gave another loss and cost-based solution implementation before I did.
And if "the best way" is wanted, as the OP asked, what then? Well "best" might actually be application-specific, in which case you'd need to try a few different ways with your dataset and consider your application requirements.
Here is working code for increasing the cost for unwanted negative solution variables:
cost = tf.reduce_sum(keep_loss) + Lambda * reg # Cost = sum of losses for training set, except missing data.
if prefer_nonneg: # Optionally increase cost for negative values in rhat, if you want that.
negs_indices = tf.where(rhat < tf.constant(0.0))
neg_vals = tf.gather_nd(rhat, negs_indices)
cost += 2. * tf.reduce_sum(tf.abs(neg_vals)) # 2 is a magic number (empirical parameter)
You are free to use my code but please give me some credit if you choose to use it. Give a link to this answer on stackoverflow.com please.
This design would be considered a soft constraint, because you can still get negative weights, if you let it, depending on your cost definition.
It seems that constraint= is also available in TF v1.4+ as a parameter to tf.get_variable(), where you can pass a function like tf.clip_by_value. This seems like another soft constraint, not hard constraint, in my opinion, because it depends on your function to work well or not. It also might be slow, as the other answerer tried the same function and reported it was slow to converge, although they didn't use the constraint= parameter to do this. I don't see any reason why one would be any faster than the other since they both use the same clipping approach. So if you use the constraint= parameter then you should expect slow convergence in the context of the original poster's application.
It would be nicer if also TF provided true hard constraints to the API, and let TF figure out how to both implement that as well as make it efficient on the back end. I mean, I have seen this done in linear programming solvers already for a long time. The application declares a constraint, and the back end makes it happen.