This is my pandas df:
Id Protein A_Egg B_Meat C_Milk Category
A 10 10 20 0 egg
B 20 10 0 10 milk
C 20 10 10 10 meat
D 25 20 10 0 egg
I wish to merge protein column with other column based on "Category"
My output is
Id Protein_final
A 20
B 30
C 30
D 45
Ideally, I would like to show how I am approaching but, I am frankly clueless!!
EDIT: Also, How to handle is the category is blank or does meet one of the column (in that can final should be same as initial value in protein column)
Use DataFrame.lookup with some preprocessing with remove values in columns names before _ and lowercase, last add to column:
arr = df.rename(columns=lambda x: x.split('_')[-1].lower()).lookup(df.index, df['Category'])
df['Protein'] += arr
print (df)
Id Protein A_Egg B_Meat C_Milk Category
0 A 20 10 20 0 egg
1 B 30 10 0 10 milk
2 C 30 10 10 10 meat
3 D 45 20 10 0 egg
If need only 2 columns finally:
df = df[['Id','Protein']]
You can melt the dataframe, and filter for rows where category equals the variable column, and sum the final columns :
(
df
.melt(["Id", "Protein", "Category"])
.assign(variable=lambda x: x.variable.str[2:].str.lower(),
Protein_final=lambda x: x.Protein + x.value)
.query("Category == variable")
.filter(["Id", "Protein_final"])
)
Id Protein_final
0 A 20
3 D 45
6 C 30
9 B 30
Related
Im new to python
I have a data frame (df) which has the following structure:
ID
rate
Sequential number
a
150
1
a
150
1
a
50
2
b
250
1
c
25
1
d
25
1
d
40
2
d
25
3
The ID are customers, the value are monthly rates and Sequential number is a number that always increases by 1, if the customer changes the monthly rate
I want to do the following:
for every ID find the maximum value in the column Sequential number, take the associated value in the column rate, find the minimum value in the column Sequential number and take associated value in the column rate and subtracting the rates.
At the end I want to have a additional column to my data frame with the difference of the rates. Maybe the loop could do the following:
for id in df()
find max() in column Sequential number and get value in rates -
min () in column Sequential number and get value in rates
return difference
The new df_new should be this
ID
rate
Sequential number
rate_diff
a
150
1
0
a
150
1
0
a
50
2
-100
b
250
1
0
c
25
1
0
d
25
1
0
d
40
2
0
d
30
3
5
If an ID has only one entry, the rate_diff should be 0
I tried already the lambda Function:
df['diff_rate'] = df.groupby('ID')['rate'].transform(lambda x : x-x.min())
but this returns
ID
rate
Sequential number
rate_diff
a
150
1
100
a
150
1
100
a
50
2
0
b
250
1
0
c
25
1
0
d
25
1
0
d
40
2
15
d
30
3
10
Maybe someone of you have a small workaround for this! :-)
One approach with indexing:
g = df.groupby('ID')['Sequential number']
IMAX = g.idxmax()
IMIN = g.idxmin()
df['rate_diff'] = 0
df.loc[IMAX, 'rate_diff'] = (df.loc[IMAX, 'rate'].to_numpy()
-df.loc[IMIN, 'rate'].to_numpy()
)
Another with groupby.transform+where:
g = df.sort_values(by=['ID', 'Sequential number']).groupby('ID')
m = g['Sequential number'].idxmax()
df['rate_diff'] = (g['rate'].transform(lambda x: x.iloc[-1]-x.iloc[0])
.where(df.index.isin(m), 0)
)
output:
ID rate Sequential number rate_diff
0 a 150 1 0
1 a 150 1 0
2 a 50 2 -100
3 b 250 1 0
4 c 25 1 0
5 d 25 1 0
6 d 40 2 0
7 d 30 3 5
I am trying to make segregate my data into buckets based on certain user attributes and I would like to see some counts in each of the buckets.For this I have imported this data into a Pandas Dataframe.
I have data that has user city, kids age and their unique id. I would like to know the count of users who reside in city A and have kids in age group 0-5.
Sample Data frame looks something like this:
city kids_age user_id
A 10 1
B 4 2
A 4 3
C 8 4
A 3 5
Expected Output:
city bin count
A 0-5 2
5-10 1
B 0-5 1
5-10 0
C 0-5 0
5-10 1
I tried group by on two columns city and kids age:
user_details_df_cropped_1.groupby(['city', 'kids_age']).count()
It gave me an output that looks something like this:
city kids_age user_id count
A 10 1 1
4 3 1
3 5 1
B 4 2 1
C 8 4 1
I returns me the users grouped by city, but not really by kids age bins(ranges). What am I missing here? Appreciate the help!!
Use cut for binning, pass to DataFrame.groupby, add 0 rows with DataFrame.stack
DataFrame.unstack an last convert to DataFrame by Series.reset_index:
bins = [0,5,10]
labels = ['{}-{}'.format(i, j) for i, j in zip(bins[:-1], bins[1:])]
b = pd.cut(df['kids_age'], bins=bins, labels=labels, include_lowest=True)
df = df.groupby(['city', b]).size().unstack(fill_value=0).stack().reset_index(name='count')
print (df)
city kids_age count
0 A 0-5 2
1 A 5-10 1
2 B 0-5 1
3 B 5-10 0
4 C 0-5 0
5 C 5-10 1
Another solution with DataFrame.reindex and MultiIndex.from_product for added mising rows filled by 0:
bins = [0,5,10]
labels = ['{}-{}'.format(i, j) for i, j in zip(bins[:-1], bins[1:])]
b = pd.cut(df['kids_age'], bins=bins, labels=labels, include_lowest=True)
mux = pd.MultiIndex.from_product([df['city'].unique(), labels], names=['city','kids_age'])
df = (df.groupby(['city', b])
.size()
.reindex(mux, fill_value=0)
.reset_index(name='count'))
print (df)
city kids_age count
0 A 0-5 2
1 A 5-10 1
2 B 0-5 1
3 B 5-10 0
4 C 0-5 0
5 C 5-10 1
I have a column in pandas dataset of random values ranging btw 100 and 500.
I need to create a new column 'deciles' out of it - like ranking, total of 20 deciles. I need to assign rank number out of 20 based on the value.
10 to 20 - is the first decile, number 1
20 to 30 - is the second decile, number 2
x = np.random.randint(100,501,size=(1000)) # column of 1000 rows with values ranging btw 100, 500.
df['credit_score'] = x
df['credit_decile_rank'] = df['credit_score'].map( lambda x: int(x/20) )
df.head()
Use integer division by 10:
df = pd.DataFrame({
'credit_score':[4,15,24,55,77,81],
})
df['credit_decile_rank'] = df['credit_score'] // 10
print (df)
credit_score credit_decile_rank
0 4 0
1 15 1
2 24 2
3 55 5
4 77 7
5 81 8
I would like to apply a custom function to each level within a multiindex.
For example, I have the dataframe
df = pd.DataFrame(np.arange(16).reshape((4,4)),
columns=pd.MultiIndex.from_product([['OP','PK'],['PRICE','QTY']]))
of which I want to add a column for each level 0 column, called "Value" which is the result of the following function;
def my_func(df, scale):
return df['QTY']*df['PRICE']*scale
where the user supplies the "scale" value.
Even in setting up this example, I am not sure how to show the result I want. But I know I want the final dataframe's multiindex column to be
pd.DataFrame(columns=pd.MultiIndex.from_product([['OP','PK'],['PRICE','QTY','Value']]))
Even if that wasn't had enough, I want to apply one "scale" value for the "OP" level 0 column and a different "scale" value to the "PK" column.
Use:
def my_func(df, scale):
#select second level of columns
df1 = df.xs('QTY', axis=1, level=1).values *df.xs('PRICE', axis=1, level=1) * scale
#create MultiIndex in columns
df1.columns = pd.MultiIndex.from_product([df1.columns, ['val']])
#join to original
return pd.concat([df, df1], axis=1).sort_index(axis=1)
print (my_func(df, 10))
OP PK
PRICE QTY val PRICE QTY val
0 0 1 0 2 3 60
1 4 5 200 6 7 420
2 8 9 720 10 11 1100
3 12 13 1560 14 15 2100
EDIT:
For multiple by scaled values different for each level is possible use list of values:
print (my_func(df, [10, 20]))
OP PK
PRICE QTY val PRICE QTY val
0 0 1 0 2 3 120
1 4 5 200 6 7 840
2 8 9 720 10 11 2200
3 12 13 1560 14 15 4200
Use groupby + agg, and then concatenate the pieces together with pd.concat.
scale = 10
v = df.groupby(level=0, axis=1).agg(lambda x: x.values.prod(1) * scale)
v.columns = pd.MultiIndex.from_product([v.columns, ['value']])
pd.concat([df, v], axis=1).sort_index(axis=1, level=0)
OP PK
PRICE QTY value PRICE QTY value
0 0 1 0 2 3 60
1 4 5 200 6 7 420
2 8 9 720 10 11 1100
3 12 13 1560 14 15 2100
First, let me set the stage.
I start with a pandas dataframe klmn, that looks like this:
In [15]: klmn
Out[15]:
K L M N
0 0 a -1.374201 35
1 0 b 1.415697 29
2 0 a 0.233841 18
3 0 b 1.550599 30
4 0 a -0.178370 63
5 0 b -1.235956 42
6 0 a 0.088046 2
7 0 b 0.074238 84
8 1 a 0.469924 44
9 1 b 1.231064 68
10 2 a -0.979462 73
11 2 b 0.322454 97
Next I split klmn into two dataframes, klmn0 and klmn1, according to the value in the 'K' column:
In [16]: k0 = klmn.groupby(klmn['K'] == 0)
In [17]: klmn0, klmn1 = [klmn.ix[k0.indices[tf]] for tf in (True, False)]
In [18]: klmn0, klmn1
Out[18]:
( K L M N
0 0 a -1.374201 35
1 0 b 1.415697 29
2 0 a 0.233841 18
3 0 b 1.550599 30
4 0 a -0.178370 63
5 0 b -1.235956 42
6 0 a 0.088046 2
7 0 b 0.074238 84,
K L M N
8 1 a 0.469924 44
9 1 b 1.231064 68
10 2 a -0.979462 73
11 2 b 0.322454 97)
Finally, I compute the mean of the M column in klmn0, grouped by the value in the L column:
In [19]: m0 = klmn0.groupby('L')['M'].mean(); m0
Out[19]:
L
a -0.307671
b 0.451144
Name: M
Now, my question is, how can I subtract m0 from the M column of the klmn1 sub-dataframe, respecting the value in the L column? (By this I mean that m0['a'] gets subtracted from the M column of each row in klmn1 that has 'a' in the L column, and likewise for m0['b'].)
One could imagine doing this in a way that replaces the the values in the M column of klmn1 with the new values (after subtracting the value from m0). Alternatively, one could imagine doing this in a way that leaves klmn1 unchanged, and instead produces a new dataframe klmn11 with an updated M column. I'm interested in both approaches.
If you reset the index of your klmn1 dataframe to be that of the column L, then your dataframe will automatically align the indices with any series you subtract from it:
In [1]: klmn1.set_index('L')['M'] - m0
Out[1]:
L
a 0.777595
a -0.671791
b 0.779920
b -0.128690
Name: M
Option #1:
df1.subtract(df2, fill_value=0)
Option #2:
df1.subtract(df2, fill_value=None)