I am new to the Transformers concept and I am going through some tutorials and writing my own code to understand the Squad 2.0 dataset Question Answering using the transformer models. In the hugging face website, I came across 2 different links
https://huggingface.co/models
https://huggingface.co/transformers/pretrained_models.html
I want to know the difference between these 2 websites. Does one link have just a pre-trained model and the other have a pre-trained and fine-tuned model?
Now if I want to use, let's say an Albert Model For Question Answering and train with my Squad 2.0 training dataset on that and evaluate the model, to which of the link should I further?
I would formulate it like this:
The second link basically describes "community-accepted models", i.e., models that serve as the basis for the implemented Huggingface classes, like BERT, RoBERTa, etc., and some related models that have a high aceptance or have been peer-reviewed.
This list has bin around much longer, whereas the list in the first link only recently got introduced directly on the Huggingface website, where the community can basically upload arbitrary checkpoints that are simply considered "compatible" with the library. Oftentimes, these are additional models trained by practitioners or other volunteers, and have a task-specific fine-tuning. Note that al models from /pretrained_models.html are also included in the /models interface as well.
If you have a very narrow usecase, you might as well check and see if there was already some model that has been fine-tuned on your specific task. In the worst case, you'll simply end up with the base model anyways.
Related
I am currently testing out custom object detection using the Tensorflow API. But I don't quite seem to understand the theory behind it.
So if I for example download a version of MobileNet and use it to train on, lets say, red and green apples. Does it forget all the things that is has already been trained on? And if so, why does it then benefit to use MobileNet over building a CNN from scratch.
Thanks for any answers!
Does it forget all the things that is has already been trained on?
Yes, if you re-train a CNN previously trained on a large database with a new database containing fewer classes it will "forget" the old classes. However, the old pre-training can help learning the new classes, this is a training strategy called "transfert learning" of "fine tuning" depending on the exact approach.
As a rule of thumb it is generally not a good idea to create a new network architecture from scratch as better networks probably already exist. You may want to implement your custom architecture if:
You are learning CNN's and deep learning
You have a specific need and you proved that other architectures won't fit or will perform poorly
Usually, one take an existing pre-trained network and specialize it for their specific task using transfert learning.
A lot of scientific literature is available for free online if you want to learn. you can start with the Yolo series and R-CNN, Fast-RCNN and Faster-RCNN for detection networks.
The main concept behind object detection is that it divides the input image in a grid of N patches, and then for each patch, it generates a set of sub-patches with different aspect ratios, let's say it generates M rectangular sub-patches. In total you need to classify MxN images.
In general the idea is then analyze each sub-patch within each patch . You pass the sub-patch to the classifier in your model and depending on the model training, it will classify it as containing a green apple/red apple/nothing. If it is classified as a red apple, then this sub-patch is the bounding box of the object detected.
So actually, there are two parts you are interested in:
Generating as many sub-patches as possible to cover as many portions of the image as possible (Of course, the more sub-patches, the slower your model will be) and,
The classifier. The classifier is normally an already exisiting network (MobileNeet, VGG, ResNet...). This part is commonly used as the "backbone" and it will extract the features of the input image. With the classifier you can either choose to training it "from zero", therefore your weights will be adjusted to your specific problem, OR, you can load the weigths from other known problem and use them in your problem so you won't need to spend time training them. In this case, they will also classify the objects for which the classifier was training for.
Take a look at the Mask-RCNN implementation. I find very interesting how they explain the process. In this architecture, you will not only generate a bounding box but also segment the object of interest.
Suppose you're searching for a pretrained model for e.g. human gender recognition, or age estimation (Transfer Learning).
So, you'd want a net that is trained on, ideally, human faces and not on stuff like the ImageNet dataset.
I know that there are two big starting points for the search:
Keras applications
TensorHub
Now, the best I've found is to use the search tool of the TensorHub website, like here.
That gives me some models trained on the CelebA-HQ dataset, which is something I was searching for.
But, it didn't give any results for e.g. the keywords "sport", "food" or "gun".
So, what is a good way to find pretrained models for a desired "topic"?
It's hard to find a model for each topic at a single place.
The general strategy could be searching in GitHub with the relevant tags ["tensorflow", "sport"].
You can generally find many models on model-zoo websites: https://modelzoo.co/
This is also useful: https://github.com/tensorflow/models
If you need code (probably with pre-trained weights): paperswithcode.com is a good place to search.
I'm trying to train a model for a sentence classification task. The input is a sentence (a vector of integers) and the output is a label (0 or 1). I've seen some articles here and there about using Bert and GPT2 for text classification tasks. However, I'm not sure which one should I pick to start with. Which of these recent models in NLP such as original Transformer model, Bert, GPT2, XLNet would you use to start with? And why? I'd rather to implement in Tensorflow, but I'm flexible to go for PyTorch too.
Thanks!
It highly depends on your dataset and is part of the data scientist's job to find which model is more suitable for a particular task in terms of selected performance metric, training cost, model complexity etc.
When you work on the problem you will probably test all of the above models and compare them. Which one of them to choose first? Andrew Ng in "Machine Learning Yearning" suggest starting with simple model so you can quickly iterate and test your idea, data preprocessing pipeline etc.
Don’t start off trying to design and build the perfect system.
Instead, build and train a basic system quickly—perhaps in just a few
days
According to this suggestion, you can start with a simpler model such as ULMFiT as a baseline, verify your ideas and then move on to more complex models and see how they can improve your results.
Note that modern NLP models contain a large number of parameters and it is difficult to train them from scratch without a large dataset. That's why you may want to use transfer learning: you can download pre-trained model and use it as a basis and fine-tune it to your task-specific dataset to achieve better performance and reduce training time.
I agree with Max's answer, but if the constraint is to use a state of the art large pretrained model, there is a really easy way to do this. The library by HuggingFace called pytorch-transformers. Whether you chose BERT, XLNet, or whatever, they're easy to swap out. Here is a detailed tutorial on using that library for text classification.
EDIT: I just came across this repo, pytorch-transformers-classification (Apache 2.0 license), which is a tool for doing exactly what you want.
Well like others mentioned, it depends on the dataset and multiple models should be tried and best one must be chosen.
However, sharing my experience, XLNet beats all other models so far by a good margin. Hence if learning is not the objective, i would simple start with XLNET and then try a few more down the line and conclude. It just saves time in exploring.
Below repo is excellent to do all this quickly. Kudos to them.
https://github.com/microsoft/nlp-recipes
It uses hugging face transformers and makes them dead simple. 😃
I have used XLNet, BERT, and GPT2 for summarization tasks (English only). Based on my experience, GPT2 works the best among all 3 on short paragraph-size notes, while BERT performs better for longer texts (up to 2-3 pages). You can use XLNet as a benchmark.
Open CV provides a simple API to detect and extract faces from given images. ( I do not think it works perfectly fine though because I experienced that it cuts frames from the input pictures that have nothing to do with face images. )
I wonder if tensorflow API can be used for face detection. I failed finding relevant information but hoping that maybe an experienced person in the field can guide me on this subject. Can tensorflow's object detection API be used for face detection as well in the same way as Open CV does? (I mean, you just call the API function and it gives you the face image from the given input image.)
You can, but some work is needed.
First, take a look at the object detection README. There are some useful articles you should follow. Specifically: (1) Configuring an object detection pipeline, (3) Preparing inputs and (3) Running locally. You should start with an existing architecture with a pre-trained model. Pretrained models can be found in Model Zoo, and their corresponding configuration files can be found here.
The most common pre-trained models in Model Zoo are on COCO dataset. Unfortunately this dataset doesn't contain face as a class (but does contain person).
Instead, you can start with a pre-trained model on Open Images, such as faster_rcnn_inception_resnet_v2_atrous_oid, which does contain face as a class.
Note that this model is larger and slower than common architectures used on COCO dataset, such as SSDLite over MobileNetV1/V2. This is because Open Images has a lot more classes than COCO, and therefore a well working model need to be much more expressive in order to be able to distinguish between the large amount of classes and localizing them correctly.
Since you only want face detection, you can try the following two options:
If you're okay with a slower model which will probably result in better performance, start with faster_rcnn_inception_resnet_v2_atrous_oid, and you can only slightly fine-tune the model on the single class of face.
If you want a faster model, you should probably start with something like SSDLite-MobileNetV2 pre-trained on COCO, but then fine-tune it on the class of face from a different dataset, such as your own or the face subset of Open Images.
Note that the fact that the pre-trained model isn't trained on faces doesn't mean you can't fine-tune it to be, but rather that it might take more fine-tuning than a pre-trained model which was pre-trained on faces as well.
just increase the shape of the input, I tried and it's work much better
I start the course of tensorflow in udacity, and simultaneously I am looking on the web for the topic.
I suppose that the typical use cases are well solved already, in a better way that i can achieve by my own. In other words in some place exists trained models for usual cases ready to use. I found zooModels that if I undestand properly is the thing that i looking for. but I can't realize that there does not exist a ocr model published that can recognise a number in a image:
image example
Do i need to train my own model? Is there a repository that i don't know?