Schedule same query for 7 Projects - google-bigquery

I've created a Query that selects a subset of data from one Projects view and overwrites a table to store this subset of data.
I now need to run that same query on 7 different but equally configured projects, all of which need append their subset of data into a single aggregate dataset.
A big problem I see here is switching from overwrite to append, which adds complexity in figuring out the last time an append worked correctly and avoiding duplicate data.
I'm thinking to create a parameterized query that will take the project ID as an input and am looking to schedule it 7 times with the given project IDs.
However, maybe there's a better solution? My approach doesn't seem to "right". Maybe a sort of subselect / repeat for every parameter value could be used?

Related

Best practice to update bulk data in table used for reporting in SQL

I have created a table for reporting purpose where I am storing data for about 50 columns and at some time interval my scheduler executes a service which processes other tables and fill up data in my flat table.
Currently I am deleting and inserting data in that table But I want to know if this is the good practice or should I check every column in every row and update it if any change found and insert new record if data does not exists.
FYI, total number of rows which are being reinserted is 100k+.
This is a very broad question that can only really be answered with access to your environment and discussion on your personal requirements. Obviously this is not possible via Stack Overflow.
This means you will need to make this decision yourself.
The information you need to understand to be able to do this are the types of table updates available and how you can achieve them, normally referred to as Slowly Changing Dimensions. There are several different types, each with their own advantages, disadvantages and optimal use cases.
Once you understand the how of getting your data to incrementally update as required, you can then look at the why and whether the extra processing logic required to achieve this is actually worth it. Your dataset of a few hundred thousand rows of data is not large and probably may therefore not need this level of processing just yet, though that assessment will depend on how complex and time consuming your current process is and how long you have to run it.
It is probably faster to repopulate the table of 100k rows. To do an update, you still need to:
generate all the rows to insert
compare values in every row
update the values that have changed
The expense of updating rows is heavily on the logging and data movement operations at the data page level. In addition, you need to bring the data together.
If the update is updating a significant portion of rows, perhaps even just a few percent of them, then it is likely that all data pages will be modified. So the I/O is pretty similar.
When you simply replace the table, you will start by either dropping the table or truncating it. Those are relatively cheap operations because they are not logged at the row level. Then you are inserting into the table. Inserting 100,000 rows from one table to another should be pretty fast.
The above is general guidance. Of course, if you are only changing 3 rows in the table each day, then update is going to be faster. Or, if you are adding a new layer of data each day, then just an insert, with a handful of changed historical values might be a fine approach.

Best way to perform a distinct on +5M records table

I have an application using an AWS Aurora SQL postgres 10 DB that expects +5M records per day on a table. The application will be running on a kubernetes environment with ~5 pods.
One of the applications requirements is to export a method to build an object with all the possible values of 5 columns of the table. ie: all distinct values of the name column.
We expect ~100 different values per column. A distinct/group by takes more than 1s per column, making the process not meeting the non functional requirements (process time).
The solution I found was to create a table/view with the distinct of each column, that table/view will be refreshed with a cron like task.
Is this the more effective approach to meet the non functional/process time requirement using only postgres tools?
One possible solution is a materialized view that you regularly refresh. Between these refreshes, the data will become slightly stale.
Alternatively, you can maintain a separate table with just the distinct values and use triggers to keep the information up to date whenever rows are modified. This will require a combined index on all the affected columns to be fast.
DISTINCT is always a performance problem if it affects many rows.

Is it a good idea to index every column if the users can filter by any column?

In my application, users can create custom tables with three column types, Text, Numeric and Date. They can have up to 20 columns. I create a SQL table based on their schema using nvarchar(430) for text, decimal(38,6) for numeric and datetime, along with an Identity Id column.
There is the potential for many of these tables to be created by different users, and the data might be updated frequently by users uploading new CSV files. To get the best performance during the upload of the user data, we truncate the table to get rid of existing data, and then do batches of BULK INSERT.
The user can make a selection based on a filter they build up, which can include any number of columns. My issue is that some tables with a lot of rows will have poor performance during this selection. To combat this I thought about adding indexes, but as we don't know what columns will be included in the WHERE condition we would have to index every column.
For example, on a local SQL server one table with just over a million rows and a WHERE condition on 6 of its columns will take around 8 seconds the first time it runs, then under one second for subsequent runs. With indexes on every column it will run in under one second the first time the query is ran. This performance issue is amplified when we test on an SQL Azure database, where the same query will take over a minute the first time its run, and does not improve on subsequent runs, but with the indexes it takes 1 second.
So, would it be a suitable solution to add a index on every column when a user creates a column, or is there a better solution?
Yes, it's a good idea given your model. There will, of course, be more overhead maintaining the indexes on the insert, but if there is no predictable standard set of columns in the queries, you don't have a lot of choices.
Suppose by 'updated frequently,' you mean data is added frequently via uploads rather than existing records being modified. In that case, you might consider one of the various non-SQL databases (like Apache Lucene or variants) which allow efficient querying on any combination of data. For reading massive 'flat' data sets, they are astonishingly fast.

Need help designing a DB - for a non DBA

I'm using Google's Cloud Storage & BigQuery. I am not a DBA, I am a programmer. I hope this question is generic enough to help others too.
We've been collecting data from a lot of sources and will soon start collecting data real-time. Currently, each source goes to an independent table. As new data comes in we append it into the corresponding existing table.
Our data analysis requires each record to have a a timestamp. However our source data files are too big to edit before we add them to cloud storage (4+ GB of textual data/file). As far as I know there is no way to append a timestamp column to each row before bringing them in BigQuery, right?
We are thus toying with the idea of creating daily tables for each source. But don't know how this will work when we have real time data coming in.
Any tips/suggestions?
Currently, there is no way to automatically add timestamps to a table, although that is a feature that we're considering.
You say your source files are too big to edit before putting in cloud storage... does that mean that the entire source file should have the same timestamp? If so, you could import to a new BigQuery table without a timestamp, then run a query that basically copies the table but adds a timestamp. For example, SELECT all,fields, CURRENT_TIMESTAMP() FROM my.temp_table (you will likely want to use allow_large_results and set a destination table for that query). If you want to get a little bit trickier, you could use the dataset.DATASET pseudo-table to get the modified time of the table, and then add it as a column to your table either in a separate query or in a JOIN. Here is how you'd use the DATASET pseudo-table to get the last modified time:
SELECT MSEC_TO_TIMESTAMP(last_modified_time) AS time
FROM [publicdata:samples.__DATASET__]
WHERE table_id = 'wikipedia'
Another alternative to consider is the BigQuery streaming API (More info here). This lets you insert single rows or groups of rows into a table just by posting them directly to bigquery. This may save you a couple of steps.
Creating daily tables is a reasonable option, depending on how you plan to query the data and how many input sources you have. If this is going to make your queries span hundreds of tables, you're likely going to see poor performance. Note that if you need timestamps because you want to limit your queries to certain dates and those dates are within the last 7 days, you can use the time range decorators (documented here).

Select part of a table for later use

I'm currently trying to optimize my program. I have a large database which consists of data which are timestamped. The data I need to update is only data for the current day, so I don't want to search the entire database more than once to find only the entries of today. Is there a way to select something and then use it later in several different (MERGE INTO) commands?
I want to select all the data of today, then run a while loop (in java) on every single entry of data for today updating them all. So is this even possible? Or do I have to traverse the entire database for each while-loop iteration?
If you are optimizing your program and your database is timestamped. Then the first thing you can do is to create index for the timestamps field. This will reduce your query execution time because your filter criteria is related to that time-stamp field.
Use a proper data caching technology, like memcached in order to minimize database hits for read-heavy, slowly changing data.