Removing nan from pandas dataframe and reshaping dataframe - pandas

I have a pandas dataframe df which looks as following:
0 1 2 3 4 5 6
0 3 74
1 4 2
2 -9
3 -1 2 -16 -21
4 1
5 28
I want to remove all the nan from the above and realign the data in each row to get the following:
0 1 2 3
0 3 74
1 4 2
2 -9
3 -1 2 -16 -21
4 1
5 28
Basically I am trying to left align all the data in each row after removing nan. I am not sure how to proceed with this.

First shift all non missing values by justify and then use DataFrame.dropna for remove only NaNs columns:
arr = justify(df.to_numpy(), invalid_val=np.nan)
df = pd.DataFrame(arr).dropna(axis=1, how='all')
print (df)
0 1 2 3
0 3.0 74.0 NaN NaN
1 4.0 2.0 NaN NaN
2 -9.0 NaN NaN NaN
3 -1.0 2.0 -16.0 -21.0
4 1.0 NaN NaN NaN
5 28.0 NaN NaN NaN
#https://stackoverflow.com/a/44559180/2901002
def justify(a, invalid_val=0, axis=1, side='left'):
"""
Justifies a 2D array
Parameters
----------
A : ndarray
Input array to be justified
axis : int
Axis along which justification is to be made
side : str
Direction of justification. It could be 'left', 'right', 'up', 'down'
It should be 'left' or 'right' for axis=1 and 'up' or 'down' for axis=0.
"""
if invalid_val is np.nan:
mask = ~np.isnan(a)
else:
mask = a!=invalid_val
justified_mask = np.sort(mask,axis=axis)
if (side=='up') | (side=='left'):
justified_mask = np.flip(justified_mask,axis=axis)
out = np.full(a.shape, invalid_val)
if axis==1:
out[justified_mask] = a[mask]
else:
out.T[justified_mask.T] = a.T[mask.T]
return out

This solution takes the data into numpy territory, run some computations with numpy isnan and numpy compress, create individual dataframes, and lump back into one dataframe with pandas concat :
data = """ 0 1 2 3 4 5 6
3 74 None None None None None
4 2 None None None None None
None None -9 None None None None
None None None -1 2 -16 -21
None None 1 None None None None
None None 28 None None None None """
df = pd.read_csv(StringIO(data), sep='\s{2,}',engine='python', na_values=["None"])
df
0 1 2 3 4 5 6
0 3.0 74.0 NaN NaN NaN NaN NaN
1 4.0 2.0 NaN NaN NaN NaN NaN
2 NaN NaN -9.0 NaN NaN NaN NaN
3 NaN NaN NaN -1.0 2.0 -16.0 -21.0
4 NaN NaN 1.0 NaN NaN NaN NaN
5 NaN NaN 28.0NaN NaN NaN NaN
#convert to numpy array
M = df.to_numpy()
#get True or False depending on the null status of each entry
condition = ~np.isnan(M)
#for each array, get entries that are not null
step1 = [np.compress(ent,arr) for ent,arr in zip(condition,M)]
step1
#concatenate each dataframe
step2 = pd.concat([pd.DataFrame(ent).T for ent in step1],ignore_index=True)
print(step2)
0 1 2 3
0 3.0 74.0 NaN NaN
1 4.0 2.0 NaN NaN
2 -9.0 NaN NaN NaN
3 -1.0 2.0 -16.0 -21.0
4 1.0 NaN NaN NaN
5 28.0 NaN NaN NaN
#alternatively, from step1 we could find the longest array and use that value to resize all the other arrays :
reshape = max(len(arr) for arr in step1)
#this happens in place
[arr.resize(reshape,refcheck=False) for arr in step1]
outcome = pd.DataFrame(step1).where(lambda x: x.ne(0),np.nan)

Related

How to keep all values from a dataframe except where NaN is present in another dataframe?

I am new to Pandas and I am stuck at this specific problem where I have 2 DataFrames in Pandas, e.g.
>>> df1
A B
0 1 9
1 2 6
2 3 11
3 4 8
>>> df2
A B
0 Nan 0.05
1 Nan 0.05
2 0.16 Nan
3 0.16 Nan
What I am trying to achieve is to retain all values from df1 except where there is a NaN in df2 i.e.
>>> df3
A B
0 Nan 9
1 Nan 6
2 3 Nan
3 4 Nan
I am talking about dfs with 10,000 rows each so I can't do this manually. Also indices and columns are the exact same in each case. I also have no NaN values in df1.
As far as I understand df.update() will either overwrite all values including NaN or update only those that are NaN.
You can use boolean masking using DataFrame.notna.
# df2 = df2.astype(float) # This needed if your dtypes are not floats.
m = df2.notna()
df1[m]
A B
0 NaN 9.0
1 NaN 6.0
2 3.0 NaN
3 4.0 NaN

In pandas replace consecutive 0s with NaN

I want to clean some data by replacing only CONSECUTIVE 0s in a data frame
Given:
import pandas as pd
import numpy as np
d = [[1,np.NaN,3,4],[2,0,0,np.NaN],[3,np.NaN,0,0],[4,np.NaN,0,0]]
df = pd.DataFrame(d, columns=['a', 'b', 'c', 'd'])
df
a b c d
0 1 NaN 3 4.0
1 2 0.0 0 NaN
2 3 NaN 0 0.0
3 4 NaN 0 0.0
The desired result should be:
a b c d
0 1 NaN 3 4.0
1 2 0.0 NaN NaN
2 3 NaN NaN NaN
3 4 NaN NaN NaN
where column c & d are affected but column b is NOT affected as it only has 1 zero (and not consecutive 0s).
I have experimented with this answer:
Replacing more than n consecutive values in Pandas DataFrame column
which is along the right lines but the solution keeps the first 0 in a given column which is not desired in my case.
Let us do shift with mask
df=df.mask((df.shift().eq(df)|df.eq(df.shift(-1)))&(df==0))
Out[469]:
a b c d
0 1 NaN 3.0 4.0
1 2 0.0 NaN NaN
2 3 NaN NaN NaN
3 4 NaN NaN NaN

For every row in pandas, do until sample ID change

How can I iterarate over rows in a dataframe until the sample ID change?
my_df:
ID loc_start
sample1 10
sample1 15
sample2 10
sample2 20
sample3 5
Something like:
samples = ["sample1", "sample2" ,"sample3"]
out = pd.DataFrame()
for sample in samples:
if my_df["ID"] == sample:
my_list = []
for index, row in my_df.iterrows():
other_list = [row.loc_start]
my_list.append(other_list)
my_list = pd.DataFrame(my_list)
out = pd.merge(out, my_list)
Expected output:
sample1 sample2 sample3
10 10 5
15 20
I realize of course that this could be done easier if my_df really would look like this. However, what I'm after is the principle to iterate over rows until a certain column value change.
Based on the input & output provided, this should work.
You need to provide more info if you are looking for something else.
df.pivot(columns='ID', values = 'loc_start').rename_axis(None, axis=1).apply(lambda x: pd.Series(x.dropna().values))
output
sample1 sample2 sample3
0 10.0 10.0 5.0
1 15.0 20.0 NaN
Ben.T is correct that a pivot works here. Here is an example:
import pandas as pd
import numpy as np
df = pd.DataFrame(data=np.random.randint(0, 5, (10, 2)), columns=list("AB"))
# what does the df look like? Here, I consider column A to be analogous to your "ID" column
In [5]: df
Out[5]:
A B
0 3 1
1 2 1
2 4 2
3 4 1
4 0 4
5 4 2
6 4 1
7 3 1
8 1 1
9 4 0
# now do a pivot and see what it looks like
df2 = df.pivot(columns="A", values="B")
In [8]: df2
Out[8]:
A 0 1 2 3 4
0 NaN NaN NaN 1.0 NaN
1 NaN NaN 1.0 NaN NaN
2 NaN NaN NaN NaN 2.0
3 NaN NaN NaN NaN 1.0
4 4.0 NaN NaN NaN NaN
5 NaN NaN NaN NaN 2.0
6 NaN NaN NaN NaN 1.0
7 NaN NaN NaN 1.0 NaN
8 NaN 1.0 NaN NaN NaN
9 NaN NaN NaN NaN 0.0
Not quite what you wanted. With a little help from Jezreal's answer
df2 = df2.apply(lambda x: pd.Series(x.dropna().values))
In [20]: df3
Out[20]:
A 0 1 2 3 4
0 4.0 1.0 1.0 1.0 2.0
1 NaN NaN NaN 1.0 1.0
2 NaN NaN NaN NaN 2.0
3 NaN NaN NaN NaN 1.0
4 NaN NaN NaN NaN 0.0
The empty spots in the dataframe have to be filled with something, and NaN is used by default. Is this what you wanted?
If, on the other hand, you wanted to perform an operation on your data you would use the groupby instead.
df2 = df.groupby(by="A", as_index=False).mean()

Create new dataframe columns from old dataframe rows using for loop --> N/A values

I created a dataframe df1:
df1 = pd.read_csv('FBK_var_conc_1.csv', names = ['Cycle', 'SQ'])
df1 = df1['SQ'].copy()
df1 = df1.to_frame()
df1.head(n=10)
SQ
0 2430.0
1 2870.0
2 2890.0
3 3270.0
4 3350.0
5 3520.0
6 26900.0
7 26300.0
8 28400.0
9 3230.0
And then created a second dataframe df2, that I want to fill with the row values of df 1:
df2 = pd.DataFrame()
for x in range(12):
y='Experiment %d' % (x+1)
df2[y]= df1.iloc[3*x:3*x+3]
df2
I get the column names from Experiment 1 - Experiment 12 in df2 and the first column i filled with the right values, but all following columns are filled with N/A.
> Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6 Experiment 7 Experiment 8 Experiment 9 Experiment
> 10 Experiment 11 Experiment 12
> 0 2430.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
> 1 2870.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
> 2 2890.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
I've been looking at this for the last 2 hours but can't figure out why the columns after column 1 aren't filled with values.
Desired output:
Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6 Experiment 7 Experiment 8 Experiment 9 Experiment 10 Experiment 11 Experiment 12
2430 3270 26900 3230 2940 243000 256000 249000 2880 26100 3890 33400
2870 3350 26300 3290 3180 242000 254000 250000 3390 27900 3730 30700
2890 3520 28400 3090 3140 253000 260000 237000 3510 27400 3760 29600
I found the issue.
I had to use .values
So the final line of the loop has to be:
df2[y] = df1.iloc[3*x:3*x+3].values
and I get the right output

Boxplot with pandas and groupby

I have the following dataset sample:
0 1
0 0 0.040158
1 2 0.500642
2 0 0.005694
3 1 0.065052
4 0 0.034789
5 2 0.128495
6 1 0.088816
7 1 0.056725
8 0 -0.000193
9 2 -0.070252
10 2 0.138282
11 2 0.054638
12 2 0.039994
13 2 0.060659
14 0 0.038562
And need a box and whisker plot, grouped by column 0. I have the following:
plt.figure()
grouped = df.groupby(0)
grouped.boxplot(column=1)
plt.savefig('plot.png')
But I end up with three subplots. How can place all three on one plot?
Thanks.
In 0.16.0 version of pandas, you could simply do this:
df.boxplot(by='0')
Result:
I don't believe you need to use groupby.
df2 = df.pivot(columns=df.columns[0], index=df.index)
df2.columns = df2.columns.droplevel()
>>> df2
0 0 1 2
0 0.040158 NaN NaN
1 NaN NaN 0.500642
2 0.005694 NaN NaN
3 NaN 0.065052 NaN
4 0.034789 NaN NaN
5 NaN NaN 0.128495
6 NaN 0.088816 NaN
7 NaN 0.056725 NaN
8 -0.000193 NaN NaN
9 NaN NaN -0.070252
10 NaN NaN 0.138282
11 NaN NaN 0.054638
12 NaN NaN 0.039994
13 NaN NaN 0.060659
14 0.038562 NaN NaN
df2.boxplot()