Huggingface's BERT tokenizer not adding pad token - tokenize
It's not entirely clear from the documentation, but I can see that BertTokenizer is initialised with pad_token='[PAD]', so I assume when you encode with add_special_tokens=True then it would automatically pad it. Given that pad_token_id=0, I can't see any 0s in the token_ids however:
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)
tokens = tokenizer.tokenize(text)
token_ids = tokenizer.encode(text, add_special_tokens=True, max_length=2048)
# Print the original sentence.
print('Original: ', text)
# Print the sentence split into tokens.
print('\nTokenized: ', tokens)
# Print the sentence mapped to token ids.
print('\nToken IDs: ', token_ids)
Output:
Original: Toronto's key stock index ended higher in brisk trading on Thursday, extending Wednesday's rally despite being weighed down by losses on Wall Street.
The TSE 300 Composite Index rose 29.80 points to close at 5828.62, outperforming the Dow Jones Industrial Average which slumped 21.27 points to finish at 6658.60.
Toronto added to Wednesday's 55-point rally while investors took profits in New York after the Dow's 92-point gains, said MMS International analyst Katherine Beattie.
"That shows that the markets are very fragile," Beattie said. "They (investors) want to take advantage of any strength to sell," she said.
Toronto was also buoyed by its heavyweight gold group which jumped nearly 2.2 percent, aided by firmer COMEX gold prices. The key June contract rose $1.00 to $344.30.
Ten of Toronto's 14 sub-indices posted gains, led by golds, transportation, forestry products and consumer products.
The weak side included conglomerates, base metals and utilities.
Trading was heavy at 100 million shares worth C$1.54 billion ($1.1 billion).
Advancing stocks outnumbered declines 556 to 395, with 276 issues flat.
Among hot stocks, Bre-X Minerals Ltd. rose 0.13 to 2.30 on 5.0 million shares as investors continued to consider the viability of its Busang gold discovery in Indonesia.
Kenting Energy Services Inc. rose 0.25 to 9.05 after Precision Drilling Corp. amended its takeover offer
Bakery and foodstuffs maker George Weston Ltd. jumped 4.50 to close at 74.50, the TSE's top gainer.
Tokenized: ['toronto', "'", 's', 'key', 'stock', 'index', 'ended', 'higher', 'in', 'brisk', 'trading', 'on', 'thursday', ',', 'extending', 'wednesday', "'", 's', 'rally', 'despite', 'being', 'weighed', 'down', 'by', 'losses', 'on', 'wall', 'street', '.', 'the', 'ts', '##e', '300', 'composite', 'index', 'rose', '29', '.', '80', 'points', 'to', 'close', 'at', '58', '##28', '.', '62', ',', 'out', '##per', '##form', '##ing', 'the', 'dow', 'jones', 'industrial', 'average', 'which', 'slumped', '21', '.', '27', 'points', 'to', 'finish', 'at', '66', '##58', '.', '60', '.', 'toronto', 'added', 'to', 'wednesday', "'", 's', '55', '-', 'point', 'rally', 'while', 'investors', 'took', 'profits', 'in', 'new', 'york', 'after', 'the', 'dow', "'", 's', '92', '-', 'point', 'gains', ',', 'said', 'mm', '##s', 'international', 'analyst', 'katherine', 'beat', '##tie', '.', '"', 'that', 'shows', 'that', 'the', 'markets', 'are', 'very', 'fragile', ',', '"', 'beat', '##tie', 'said', '.', '"', 'they', '(', 'investors', ')', 'want', 'to', 'take', 'advantage', 'of', 'any', 'strength', 'to', 'sell', ',', '"', 'she', 'said', '.', 'toronto', 'was', 'also', 'bu', '##oy', '##ed', 'by', 'its', 'heavyweight', 'gold', 'group', 'which', 'jumped', 'nearly', '2', '.', '2', 'percent', ',', 'aided', 'by', 'firm', '##er', 'come', '##x', 'gold', 'prices', '.', 'the', 'key', 'june', 'contract', 'rose', '$', '1', '.', '00', 'to', '$', '344', '.', '30', '.', 'ten', 'of', 'toronto', "'", 's', '14', 'sub', '-', 'indices', 'posted', 'gains', ',', 'led', 'by', 'gold', '##s', ',', 'transportation', ',', 'forestry', 'products', 'and', 'consumer', 'products', '.', 'the', 'weak', 'side', 'included', 'conglomerate', '##s', ',', 'base', 'metals', 'and', 'utilities', '.', 'trading', 'was', 'heavy', 'at', '100', 'million', 'shares', 'worth', 'c', '$', '1', '.', '54', 'billion', '(', '$', '1', '.', '1', 'billion', ')', '.', 'advancing', 'stocks', 'outnumbered', 'declines', '55', '##6', 'to', '395', ',', 'with', '276', 'issues', 'flat', '.', 'among', 'hot', 'stocks', ',', 'br', '##e', '-', 'x', 'minerals', 'ltd', '.', 'rose', '0', '.', '13', 'to', '2', '.', '30', 'on', '5', '.', '0', 'million', 'shares', 'as', 'investors', 'continued', 'to', 'consider', 'the', 'via', '##bility', 'of', 'its', 'bus', '##ang', 'gold', 'discovery', 'in', 'indonesia', '.', 'kent', '##ing', 'energy', 'services', 'inc', '.', 'rose', '0', '.', '25', 'to', '9', '.', '05', 'after', 'precision', 'drilling', 'corp', '.', 'amended', 'its', 'takeover', 'offer', 'bakery', 'and', 'foods', '##tu', '##ffs', 'maker', 'george', 'weston', 'ltd', '.', 'jumped', '4', '.', '50', 'to', 'close', 'at', '74', '.', '50', ',', 'the', 'ts', '##e', "'", 's', 'top', 'gain', '##er', '.']
Token IDs: [101, 4361, 1005, 1055, 3145, 4518, 5950, 3092, 3020, 1999, 28022, 6202, 2006, 9432, 1010, 8402, 9317, 1005, 1055, 8320, 2750, 2108, 12781, 2091, 2011, 6409, 2006, 2813, 2395, 1012, 1996, 24529, 2063, 3998, 12490, 5950, 3123, 2756, 1012, 3770, 2685, 2000, 2485, 2012, 5388, 22407, 1012, 5786, 1010, 2041, 4842, 14192, 2075, 1996, 23268, 3557, 3919, 2779, 2029, 14319, 2538, 1012, 2676, 2685, 2000, 3926, 2012, 5764, 27814, 1012, 3438, 1012, 4361, 2794, 2000, 9317, 1005, 1055, 4583, 1011, 2391, 8320, 2096, 9387, 2165, 11372, 1999, 2047, 2259, 2044, 1996, 23268, 1005, 1055, 6227, 1011, 2391, 12154, 1010, 2056, 3461, 2015, 2248, 12941, 9477, 3786, 9515, 1012, 1000, 2008, 3065, 2008, 1996, 6089, 2024, 2200, 13072, 1010, 1000, 3786, 9515, 2056, 1012, 1000, 2027, 1006, 9387, 1007, 2215, 2000, 2202, 5056, 1997, 2151, 3997, 2000, 5271, 1010, 1000, 2016, 2056, 1012, 4361, 2001, 2036, 20934, 6977, 2098, 2011, 2049, 8366, 2751, 2177, 2029, 5598, 3053, 1016, 1012, 1016, 3867, 1010, 11553, 2011, 3813, 2121, 2272, 2595, 2751, 7597, 1012, 1996, 3145, 2238, 3206, 3123, 1002, 1015, 1012, 4002, 2000, 1002, 29386, 1012, 2382, 1012, 2702, 1997, 4361, 1005, 1055, 2403, 4942, 1011, 29299, 6866, 12154, 1010, 2419, 2011, 2751, 2015, 1010, 5193, 1010, 13116, 3688, 1998, 7325, 3688, 1012, 1996, 5410, 2217, 2443, 22453, 2015, 1010, 2918, 11970, 1998, 16548, 1012, 6202, 2001, 3082, 2012, 2531, 2454, 6661, 4276, 1039, 1002, 1015, 1012, 5139, 4551, 1006, 1002, 1015, 1012, 1015, 4551, 1007, 1012, 10787, 15768, 21943, 26451, 4583, 2575, 2000, 24673, 1010, 2007, 25113, 3314, 4257, 1012, 2426, 2980, 15768, 1010, 7987, 2063, 1011, 1060, 13246, 5183, 1012, 3123, 1014, 1012, 2410, 2000, 1016, 1012, 2382, 2006, 1019, 1012, 1014, 2454, 6661, 2004, 9387, 2506, 2000, 5136, 1996, 3081, 8553, 1997, 2049, 3902, 5654, 2751, 5456, 1999, 6239, 1012, 5982, 2075, 2943, 2578, 4297, 1012, 3123, 1014, 1012, 2423, 2000, 1023, 1012, 5709, 2044, 11718, 15827, 13058, 1012, 13266, 2049, 15336, 3749, 18112, 1998, 9440, 8525, 21807, 9338, 2577, 12755, 5183, 1012, 5598, 1018, 1012, 2753, 2000, 2485, 2012, 6356, 1012, 2753, 1010, 1996, 24529, 2063, 1005, 1055, 2327, 5114, 2121, 1012, 102]
No, it would not. There is a different parameter to allow padding:
transformers >=3.0.0 padding (accepts True, max_length and False as values)
transformers < 3.0.0 pad_to_max_length (accepts True or False as Values)
add_special_tokens will add the [CLS] and the [SEP] token (101 and 102 respectively).
Related
Extract words from a column and count frequency
Does anyone know if there's an efficient way to extract all the words from a single column and count the frequency of each word in SQL Server? I only have read-only access to my database so I can't create a self-defined function to do this. Here's a reproducible example: CREATE TABLE words ( id INT PRIMARY KEY, text_column VARCHAR(1000) ); INSERT INTO words (id, text_column) VALUES (1, 'SQL Server is a popular database management system'), (2, 'It is widely used for data storage and retrieval'), (3, 'SQL Server is a powerful tool for data analysis'); I have found this code but it's not working correctly, and I think it's too complicated to understand: WITH E1(N) AS ( SELECT 1 FROM (VALUES (1),(1),(1),(1),(1),(1),(1),(1),(1),(1) ) t(N) ), E2(N) AS (SELECT 1 FROM E1 a CROSS JOIN E1 b), E4(N) AS (SELECT 1 FROM E2 a CROSS JOIN E2 b) SELECT LOWER(x.Item) AS [Word], COUNT(*) AS [Counts] FROM (SELECT * FROM words) a CROSS APPLY (SELECT ItemNumber = ROW_NUMBER() OVER(ORDER BY l.N1), Item = LTRIM(RTRIM(SUBSTRING(a.text_column, l.N1, l.L1))) FROM (SELECT s.N1, L1 = ISNULL(NULLIF(CHARINDEX(' ',a.text_column,s.N1),0)-s.N1,4000) FROM (SELECT 1 UNION ALL SELECT t.N+1 FROM (SELECT TOP (ISNULL(DATALENGTH(a.text_column)/2,0)) ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) FROM E4) t(N) WHERE SUBSTRING(a.text_column ,t.N,1) = ' ' ) s(N1) ) l(N1, L1) ) x WHERE x.item <> '' AND x.Item NOT IN ('0o', '0s', '3a', '3b', '3d', '6b', '6o', 'a', 'a1', 'a2', 'a3', 'a4', 'ab', 'able', 'about', 'above', 'abst', 'ac', 'accordance', 'according', 'accordingly', 'across', 'act', 'actually', 'ad', 'added', 'adj', 'ae', 'af', 'affected', 'affecting', 'affects', 'after', 'afterwards', 'ag', 'again', 'against', 'ah', 'ain', 'ain''t', 'aj', 'al', 'all', 'allow', 'allows', 'almost', 'alone', 'along', 'already', 'also', 'although', 'always', 'am', 'among', 'amongst', 'amoungst', 'amount', 'an', 'and', 'announce', 'another', 'any', 'anybody', 'anyhow', 'anymore', 'anyone', 'anything', 'anyway', 'anyways', 'anywhere', 'ao', 'ap', 'apart', 'apparently', 'appear', 'appreciate', 'appropriate', 'approximately', 'ar', 'are', 'aren', 'arent', 'aren''t', 'arise', 'around', 'as', 'a''s', 'aside', 'ask', 'asking', 'associated', 'at', 'au', 'auth', 'av', 'available', 'aw', 'away', 'awfully', 'ax', 'ay', 'az', 'b', 'b1', 'b2', 'b3', 'ba', 'back', 'bc', 'bd', 'be', 'became', 'because', 'become', 'becomes', 'becoming', 'been', 'before', 'beforehand', 'begin', 'beginning', 'beginnings', 'begins', 'behind', 'being', 'believe', 'below', 'beside', 'besides', 'best', 'better', 'between', 'beyond', 'bi', 'bill', 'biol', 'bj', 'bk', 'bl', 'bn', 'both', 'bottom', 'bp', 'br', 'brief', 'briefly', 'bs', 'bt', 'bu', 'but', 'bx', 'by', 'c', 'c1', 'c2', 'c3', 'ca', 'call', 'came', 'can', 'cannot', 'cant', 'can''t', 'cause', 'causes', 'cc', 'cd', 'ce', 'certain', 'certainly', 'cf', 'cg', 'ch', 'changes', 'ci', 'cit', 'cj', 'cl', 'clearly', 'cm', 'c''mon', 'cn', 'co', 'com', 'come', 'comes', 'con', 'concerning', 'consequently', 'consider', 'considering', 'contain', 'containing', 'contains', 'corresponding', 'could', 'couldn', 'couldnt', 'couldn''t', 'course', 'cp', 'cq', 'cr', 'cry', 'cs', 'c''s', 'ct', 'cu', 'currently', 'cv', 'cx', 'cy', 'cz', 'd', 'd2', 'da', 'date', 'dc', 'dd', 'de', 'definitely', 'describe', 'described', 'despite', 'detail', 'df', 'di', 'did', 'didn', 'didn''t', 'different', 'dj', 'dk', 'dl', 'do', 'does', 'doesn', 'doesn''t', 'doing', 'don', 'done', 'don''t', 'down', 'downwards', 'dp', 'dr', 'ds', 'dt', 'du', 'due', 'during', 'dx', 'dy', 'e', 'e2', 'e3', 'ea', 'each', 'ec', 'ed', 'edu', 'ee', 'ef', 'effect', 'eg', 'ei', 'eight', 'eighty', 'either', 'ej', 'el', 'eleven', 'else', 'elsewhere', 'em', 'empty', 'en', 'end', 'ending', 'enough', 'entirely', 'eo', 'ep', 'eq', 'er', 'es', 'especially', 'est', 'et', 'et-al', 'etc', 'eu', 'ev', 'even', 'ever', 'every', 'everybody', 'everyone', 'everything', 'everywhere', 'ex', 'exactly', 'example', 'except', 'ey', 'f', 'f2', 'fa', 'far', 'fc', 'few', 'ff', 'fi', 'fifteen', 'fifth', 'fify', 'fill', 'find', 'fire', 'first', 'five', 'fix', 'fj', 'fl', 'fn', 'fo', 'followed', 'following', 'follows', 'for', 'former', 'formerly', 'forth', 'forty', 'found', 'four', 'fr', 'from', 'front', 'fs', 'ft', 'fu', 'full', 'further', 'furthermore', 'fy', 'g', 'ga', 'gave', 'ge', 'get', 'gets', 'getting', 'gi', 'give', 'given', 'gives', 'giving', 'gj', 'gl', 'go', 'goes', 'going', 'gone', 'got', 'gotten', 'gr', 'greetings', 'gs', 'gy', 'h', 'h2', 'h3', 'had', 'hadn', 'hadn''t', 'happens', 'hardly', 'has', 'hasn', 'hasnt', 'hasn''t', 'have', 'haven', 'haven''t', 'having', 'he', 'hed', 'he''d', 'he''ll', 'hello', 'help', 'hence', 'her', 'here', 'hereafter', 'hereby', 'herein', 'heres', 'here''s', 'hereupon', 'hers', 'herself', 'hes', 'he''s', 'hh', 'hi', 'hid', 'him', 'himself', 'his', 'hither', 'hj', 'ho', 'home', 'hopefully', 'how', 'howbeit', 'however', 'how''s', 'hr', 'hs', 'http', 'hu', 'hundred', 'hy', 'i', 'i2', 'i3', 'i4', 'i6', 'i7', 'i8', 'ia', 'ib', 'ibid', 'ic', 'id', 'i''d', 'ie', 'if', 'ig', 'ignored', 'ih', 'ii', 'ij', 'il', 'i''ll', 'im', 'i''m', 'immediate', 'immediately', 'importance', 'important', 'in', 'inasmuch', 'inc', 'indeed', 'index', 'indicate', 'indicated', 'indicates', 'information', 'inner', 'insofar', 'instead', 'interest', 'into', 'invention', 'inward', 'io', 'ip', 'iq', 'ir', 'is', 'isn', 'isn''t', 'it', 'itd', 'it''d', 'it''ll', 'its', 'it''s', 'itself', 'iv', 'i''ve', 'ix', 'iy', 'iz', 'j', 'jj', 'jr', 'js', 'jt', 'ju', 'just', 'k', 'ke', 'keep', 'keeps', 'kept', 'kg', 'kj', 'km', 'know', 'known', 'knows', 'ko', 'l', 'l2', 'la', 'largely', 'last', 'lately', 'later', 'latter', 'latterly', 'lb', 'lc', 'le', 'least', 'les', 'less', 'lest', 'let', 'lets', 'let''s', 'lf', 'like', 'liked', 'likely', 'line', 'little', 'lj', 'll', 'll', 'ln', 'lo', 'look', 'looking', 'looks', 'los', 'lr', 'ls', 'lt', 'ltd', 'm', 'm2', 'ma', 'made', 'mainly', 'make', 'makes', 'many', 'may', 'maybe', 'me', 'mean', 'means', 'meantime', 'meanwhile', 'merely', 'mg', 'might', 'mightn', 'mightn''t', 'mill', 'million', 'mine', 'miss', 'ml', 'mn', 'mo', 'more', 'moreover', 'most', 'mostly', 'move', 'mr', 'mrs', 'ms', 'mt', 'mu', 'much', 'mug', 'must', 'mustn', 'mustn''t', 'my', 'myself', 'n', 'n2', 'na', 'name', 'namely', 'nay', 'nc', 'nd', 'ne', 'near', 'nearly', 'necessarily', 'necessary', 'need', 'needn', 'needn''t', 'needs', 'neither', 'never', 'nevertheless', 'new', 'next', 'ng', 'ni', 'nine', 'ninety', 'nj', 'nl', 'nn', 'no', 'nobody', 'non', 'none', 'nonetheless', 'noone', 'nor', 'normally', 'nos', 'not', 'noted', 'nothing', 'novel', 'now', 'nowhere', 'nr', 'ns', 'nt', 'ny', 'o', 'oa', 'ob', 'obtain', 'obtained', 'obviously', 'oc', 'od', 'of', 'off', 'often', 'og', 'oh', 'oi', 'oj', 'ok', 'okay', 'ol', 'old', 'om', 'omitted', 'on', 'once', 'one', 'ones', 'only', 'onto', 'oo', 'op', 'oq', 'or', 'ord', 'os', 'ot', 'other', 'others', 'otherwise', 'ou', 'ought', 'our', 'ours', 'ourselves', 'out', 'outside', 'over', 'overall', 'ow', 'owing', 'own', 'ox', 'oz', 'p', 'p1', 'p2', 'p3', 'page', 'pagecount', 'pages', 'par', 'part', 'particular', 'particularly', 'pas', 'past', 'pc', 'pd', 'pe', 'per', 'perhaps', 'pf', 'ph', 'pi', 'pj', 'pk', 'pl', 'placed', 'please', 'plus', 'pm', 'pn', 'po', 'poorly', 'possible', 'possibly', 'potentially', 'pp', 'pq', 'pr', 'predominantly', 'present', 'presumably', 'previously', 'primarily', 'probably', 'promptly', 'proud', 'provides', 'ps', 'pt', 'pu', 'put', 'py', 'q', 'qj', 'qu', 'que', 'quickly', 'quite', 'qv', 'r', 'r2', 'ra', 'ran', 'rather', 'rc', 'rd', 're', 'readily', 'really', 'reasonably', 'recent', 'recently', 'ref', 'refs', 'regarding', 'regardless', 'regards', 'related', 'relatively', 'research', 'research-articl', 'respectively', 'resulted', 'resulting', 'results', 'rf', 'rh', 'ri', 'right', 'rj', 'rl', 'rm', 'rn', 'ro', 'rq', 'rr', 'rs', 'rt', 'ru', 'run', 'rv', 'ry', 's', 's2', 'sa', 'said', 'same', 'saw', 'say', 'saying', 'says', 'sc', 'sd', 'se', 'sec', 'second', 'secondly', 'section', 'see', 'seeing', 'seem', 'seemed', 'seeming', 'seems', 'seen', 'self', 'selves', 'sensible', 'sent', 'serious', 'seriously', 'seven', 'several', 'sf', 'shall', 'shan', 'shan''t', 'she', 'shed', 'she''d', 'she''ll', 'shes', 'she''s', 'should', 'shouldn', 'shouldn''t', 'should''ve', 'show', 'showed', 'shown', 'showns', 'shows', 'si', 'side', 'significant', 'significantly', 'similar', 'similarly', 'since', 'sincere', 'six', 'sixty', 'sj', 'sl', 'slightly', 'sm', 'sn', 'so', 'some', 'somebody', 'somehow', 'someone', 'somethan', 'something', 'sometime', 'sometimes', 'somewhat', 'somewhere', 'soon', 'sorry', 'sp', 'specifically', 'specified', 'specify', 'specifying', 'sq', 'sr', 'ss', 'st', 'still', 'stop', 'strongly', 'sub', 'substantially', 'successfully', 'such', 'sufficiently', 'suggest', 'sup', 'sure', 'sy', 'system', 'sz', 't', 't1', 't2', 't3', 'take', 'taken', 'taking', 'tb', 'tc', 'td', 'te', 'tell', 'ten', 'tends', 'tf', 'th', 'than', 'thank', 'thanks', 'thanx', 'that', 'that''ll', 'thats', 'that''s', 'that''ve', 'the', 'their', 'theirs', 'them', 'themselves', 'then', 'thence', 'there', 'thereafter', 'thereby', 'thered', 'therefore', 'therein', 'there''ll', 'thereof', 'therere', 'theres', 'there''s', 'thereto', 'thereupon', 'there''ve', 'these', 'they', 'theyd', 'they''d', 'they''ll', 'theyre', 'they''re', 'they''ve', 'thickv', 'thin', 'think', 'third', 'this', 'thorough', 'thoroughly', 'those', 'thou', 'though', 'thoughh', 'thousand', 'three', 'throug', 'through', 'throughout', 'thru', 'thus', 'ti', 'til', 'tip', 'tj', 'tl', 'tm', 'tn', 'to', 'together', 'too', 'took', 'top', 'toward', 'towards', 'tp', 'tq', 'tr', 'tried', 'tries', 'truly', 'try', 'trying', 'ts', 't''s', 'tt', 'tv', 'twelve', 'twenty', 'twice', 'two', 'tx', 'u', 'u201d', 'ue', 'ui', 'uj', 'uk', 'um', 'un', 'under', 'unfortunately', 'unless', 'unlike', 'unlikely', 'until', 'unto', 'uo', 'up', 'upon', 'ups', 'ur', 'us', 'use', 'used', 'useful', 'usefully', 'usefulness', 'uses', 'using', 'usually', 'ut', 'v', 'va', 'value', 'various', 'vd', 've', 've', 'very', 'via', 'viz', 'vj', 'vo', 'vol', 'vols', 'volumtype', 'vq', 'vs', 'vt', 'vu', 'w', 'wa', 'want', 'wants', 'was', 'wasn', 'wasnt', 'wasn''t', 'way', 'we', 'wed', 'we''d', 'welcome', 'well', 'we''ll', 'well-b', 'went', 'were', 'we''re', 'weren', 'werent', 'weren''t', 'we''ve', 'what', 'whatever', 'what''ll', 'whats', 'what''s', 'when', 'whence', 'whenever', 'when''s', 'where', 'whereafter', 'whereas', 'whereby', 'wherein', 'wheres', 'where''s', 'whereupon', 'wherever', 'whether', 'which', 'while', 'whim', 'whither', 'who', 'whod', 'whoever', 'whole', 'who''ll', 'whom', 'whomever', 'whos', 'who''s', 'whose', 'why', 'why''s', 'wi', 'widely', 'will', 'willing', 'wish', 'with', 'within', 'without', 'wo', 'won', 'wonder', 'wont', 'won''t', 'words', 'world', 'would', 'wouldn', 'wouldnt', 'wouldn''t', 'www', 'x', 'x1', 'x2', 'x3', 'xf', 'xi', 'xj', 'xk', 'xl', 'xn', 'xo', 'xs', 'xt', 'xv', 'xx', 'y', 'y2', 'yes', 'yet', 'yj', 'yl', 'you', 'youd', 'you''d', 'you''ll', 'your', 'youre', 'you''re', 'yours', 'yourself', 'yourselves', 'you''ve', 'yr', 'ys', 'yt', 'z', 'zero', 'zi', 'zz') GROUP BY x.Item ORDER BY COUNT(*) DESC Here's the result of the above code, as you can see it's not counting correctly: Word Counts server 2 sql 2 data 1 database 1 popular 1 powerful 1 Can anyone help on this? Would be really appreciated!
You can make use of String_split here, such as select value Word, Count(*) Counts from words cross apply String_Split(text_column, ' ') where value not in(exclude list) group by value order by counts desc;
You should should the string_split function -- like this SELECT id, value as aword FROM words CROSS APPLY STRING_SPLIT(text_column, ','); This will create a table with all the words by id -- to get the count do this: SELECT aword, count(*) as counts FROM ( SELECT id, value as aword FROM words CROSS APPLY STRING_SPLIT(text_column, ','); ) x GROUP BY aword You may need to lower case the LOWER(text_column) if you want it to not matter
If you don't have access to STRING_SPLIT function, you can use weird xml trick to convert space to a word node and then shred it with nodes function: select word, COUNT(*) from ( select n.value('.', 'nvarchar(50)') AS word from ( VALUES (1, 'SQL Server is a popular database management system'), (2, 'It is widely used for data storage and retrieval'), (3, 'SQL Server is a powerful tool for data analysis') ) AS t (id, txt) CROSS APPLY ( SELECT CAST('<x>' + REPLACE(txt, ' ', '</x><x>') + '</x>' AS XML) x ) x CROSS APPLY x.nodes('x') z(n) ) w GROUP BY word Of course, this will fail on "bad" words and invalid xml-characters but it can be worked on. Text processing has never been SQL Server's strong-point though, so probably better to use some NLP library to do this kind of stuff
Controlling decimal precision after resetting index of unstacked Pandas data frame
My data is as follows: test_df = pd.DataFrame({'Manufacturer':['Ford', 'Ford', 'Mercedes', 'BMW', 'Ford', 'Mercedes', 'BMW', 'Ford', 'Mercedes', 'BMW', 'Ford', 'Mercedes', 'BMW', 'Ford', 'Mercedes', 'BMW', 'Ford', 'Mercedes', 'BMW'], 'Metric':['Orders', 'Orders', 'Orders', 'Orders', 'Orders', 'Orders', 'Orders', 'Sales', 'Sales', 'Sales', 'Sales', 'Sales', 'Sales', 'Warranty', 'Warranty', 'Warranty', 'Warranty', 'Warranty', 'Warranty'], 'Sector':['Germany', 'Germany', 'Germany', 'Germany', 'USA', 'USA', 'USA', 'Germany', 'Germany', 'Germany', 'USA', 'USA', 'USA', 'Germany', 'Germany', 'Germany', 'USA', 'USA', 'USA'], 'Value':[45000, 70000, 90000, 65000, 40000, 65000, 63000, 2700, 4400, 3400, 3000, 4700, 5700, 1500, 2000, 2500, 1300, 2000, 2450], 'City': ['Frankfurt', 'Bremen', 'Berlin', 'Hamburg', 'New York', 'Chicago', 'Los Angeles', 'Dresden', 'Munich', 'Cologne', 'Miami', 'Atlanta', 'Phoenix', 'Nuremberg', 'Dusseldorf', 'Leipzig', 'Houston', 'San Diego', 'San Francisco'] }) I reset the index and create a pivot table, as follows: temp_table = test_df.reset_index().pivot_table(values = 'Value', index = ['Manufacturer', 'Metric', 'Sector'], aggfunc='sum') Then, I create two new data frames: s1 = temp_table.set_index(['Manufacturer','Sector']).query("Metric=='Orders'").Value s2 = temp_table.set_index(['Manufacturer','Sector']).query("Metric=='Sales'").Value Then, I unstack these data frames: s1.div(s2).unstack() Which gives me: Sector Germany USA Manufacturer --- BMW 19.117647 11.052632 Ford 42.592593 13.333333 Mercedes 20.454545 13.829787 Then, I reset the index: df_out = s1.div(s2).reset_index() Which gives me: Manufacturer Sector Value 0 BMW Germany 19.117647 1 BMW USA 11.052632 2 Ford Germany 42.592593 3 Ford USA 13.333333 4 Mercedes Germany 20.454545 5 Mercedes USA 13.829787 I would like to be able to round the Value column to 2 decimal places. I tried to use the round() function, as follows: df_out['Value'].round(2) But, this doesn't seem to affect the values when I call df_out again. What is the best way to control the decimal precision in this case? Thanks!
How do I use count and group by as a condition for another table
So to preface, I'm a first-year comp sci student and we've only just started on SQL, so forgive me if the solution seems obvious. We were given a database for Zoo, which has tables for Animals, Keepers, and a link entity (if that's the right word) for care roles, connecting the two. (Schema below) CREATE TABLE Animal (ID VARCHAR(6) PRIMARY KEY, Name VARCHAR(10), Species VARCHAR(20), Age SMALLINT, Sex VARCHAR(1), Weight SMALLINT, F_ID VARCHAR(6), M_ID VARCHAR(6)); CREATE TABLE Keeper (Staff_ID VARCHAR(6) PRIMARY KEY, Keeper_Name VARCHAR(20), Specialisation VARCHAR(20)); CREATE TABLE Care_Role (ID VARCHAR(6), Staff_ID VARCHAR(6), Role VARCHAR(10), PRIMARY KEY (ID, Staff_ID)); Now the task we've been given is to work out which Keepers have been caring for more than 10 animals of the same species using the following data: INSERT INTO Animal VALUES ('11', 'Horace', 'Marmoset', 99, 'M', 5, '2','1'), ('12', 'sghgdht', 'Marmoset', 42, 'M', 3, '2','1'), ('13', 'xgnyn', 'Marmoset', 37, 'F', 3, '1','11'), ('14', 'sbfdfbng', 'Marmoset', 12, 'F', 3, '1','11'), ('15', 'fdghd', 'Marmoset', 12, 'M', 3, '1','11'), ('16', 'Fred', 'Marmoset', 6, 'M', 3, '15','1'), ('17', 'Mary', 'Marmoset', 3, 'F', 3, '8','14'), ('18', 'Jane', 'Marmoset', 5, 'F', 3, '7','13'), ('19', 'dfgjtjt', 'Marmoset', 5, 'M', 3, '16','17'), ('20', 'Eric', 'Marmoset', 5, 'M', 3, '12','13'), ('21', 'tukyufyu', 'Marmoset', 5, 'M', 3, '12','73'), ('31', 'hgndghmd', 'Giraffe', 99, 'M', 5, '201','1'), ('32', 'sghgdht', 'Giraffe', 42, 'M', 3, '201','1'), ('33', 'xgnyn', 'Giraffe', 37, 'F', 3, '111','1'), ('34', 'sbfdfbng', 'Giraffe', 12, 'F', 3, '111','1'), ('35', 'fdghd', 'Giraffe', 12, 'M', 3, '111','6'), ('36', 'Fred', 'Lion', 6, 'M', 3, '151','111'), ('37', 'Mary', 'Lion', 3, 'F', 3, '81','114'), ('38', 'Jane', 'Lion', 5, 'F', 3, '71','113'), ('39', 'Kingsly', 'Lion', 9, 'M', 3, '161','117'), ('40', 'Eric', 'Lion', 11, 'M', 3, '121','113'), ('41', 'tukyufyu', 'Lion', 2, 'M', 3, '121','173'), ('61', 'hgndghmd', 'Elephant', 6, 'F', 225, '201','111'), ('62', 'sghgdht', 'Elephant', 10, 'F', 230, '201','111'), ('63', 'xgnyn', 'Elephant', 5, 'F', 300, '111','121'), ('64', 'sbfdfbng', 'Elephant', 11, 'F', 173, '111','121'), ('65', 'fdghd', 'Elephant', 12, 'F', 231, '111','666'), ('66', 'Fred', 'Elephant', 17, 'F', 333, '151','147'), ('67', 'Mary', 'Elephant', 3, 'F', 272, '81','148'), ('68', 'Jane', 'Elephant', 8, 'F', 47, '71','136'), ('69', 'dfgjtjt', 'Elephant', 9, 'F', 131, '161','172'), ('70', 'Eric', 'Elephant', 10, 'F', 333, '121','136'), ('71', 'tukyufyu', 'Elephant', 7, 'M', 114, '121','731'); INSERT INTO Keeper VALUES ('1', 'Roger', 'tdfhuihiu'), ('2', 'Sidra', 'rgegegtnrty'), ('3', 'Amit', 'ergetetnt'), ('4', 'Lucia', 'dvojivhwivih'); INSERT INTO Care_Role VALUES ('32', '1', 'feeding'), ('32', '2', 'washing'), ('61', '1', 'feeding'), ('62', '1', 'feeding'), ('63', '1', 'feeding'), ('64', '1', 'feeding'), ('65', '1', 'feeding'), ('66', '1', 'feeding'), ('67', '1', 'feeding'), ('68', '1', 'feeding'), ('69', '1', 'feeding'), ('70', '1', 'feeding'), ('71', '1', 'feeding'), ('11', '4', 'feeding'), ('12', '4', 'feeding'), ('13', '4', 'feeding'), ('14', '4', 'feeding'), ('15', '4', 'feeding'), ('16', '4', 'feeding'), ('17', '4', 'feeding'), ('18', '4', 'feeding'), ('19', '4', 'feeding'), ('20', '4', 'feeding'), ('21', '4', 'feeding'); So far what I've managed to come up with is this: SELECT Keeper.Keeper_Name, Animal.Species, COUNT(Animal.Species) FROM Keeper JOIN Care_Role ON Keeper.Staff_ID = Care_Role.Staff_ID JOIN Animal ON Care_Role.ID = Animal.ID GROUP BY Animal.Species But this is returning more than just the name (which is what I want), as well as showing all the people who have looked after animals, rather than just those who have looked after 10 or more, I was wondering if anyone had any ideas on how to help with this? Many thanks!
Your query should be returning an error, because Keeper.Keeper_name is not in the GROUP BY. You have made a good attempt. A reasonable way to start the query is: SELECT k.Keeper_Name, a.Species, COUNT(*) FROM Keeper k JOIN Care_Role cr ON k.Staff_ID = cr.Staff_ID JOIN Animal a ON cr.ID = a.ID GROUP BY k.Keeper_Name, a.Species; This will return the number of animals of a given species that each keeper cares for. Note the following: Table aliases are abbreviations for the table. All column names are qualified. This uses the shorthand of COUNT(*) instead of counting some particular column. Your question adds an additional condition about 10 animals. You can fit that in using a HAVING clause.
Creating a list of nested dict from DataFrame?
I am trying to create a list of nested dict from the following multiindex dataframe where indices are form the first level {key:value} and the rows under the indices form the nested dict. [{'date':1980, 'country': 'United States', 'country_id':840 'count':42, 'players' : [{'player_name: xxxx','ranking': 46, 'hand': 'r'}, {'player_name: yyy', 'ranking':20, 'hand': 'r'}...]}, {'date':1980, 'country': 'Czech Republic', 'country_id':203, 'count':42, 'players' : [{'player_name: xxxx','ranking': 46, 'hand':'r'}, {'player_name: yyy', 'ranking':20, 'hand': 'r'}...]},... {'date':1982, 'country': 'United States', 'country_id':840, 'count':42, 'players' : [{'player_name: xxxx','ranking': 46, 'hand': 'r'},...] HAND RANKING PLAYER_NAME DATE COUNTRY COUNTRY_ID COUNT 1980 United States 840 42 R 46 Tim Gullikson 42 L 96 Nick Saviano 42 L 3 Jimmy Connors 42 L 79 Bruce Manson Czech Republic 203 2 R 23 Tomas Smid 2 R 65 Pavel Slozil New Zealand 554 3 R 66 Chris Lewis NZL . . 1982 United States 840 42 L 46 Van Winitsky 42 R 24 Steve Denton 42 R 26 Mel Purcell 3 R 76 Russell Simpson . .
combination of groupby, to_dict('records'), and other nuances lod = [] for name, group in df.groupby(level=[0, 1, 2, 3]): d = dict(zip(df.index.names, name)) d['players'] = group.to_dict('records') lod.append(d) lod [{'count': 2, 'country': 'Czech Republic', 'country_id': 203, 'date': 1980, 'players': [{'HAND': 'R', 'PLAYER_NAME': 'Tomas Smid', 'RANKING': 23}, {'HAND': 'R', 'PLAYER_NAME': 'Pavel Slozil', 'RANKING': 65}]}, {'count': 3, 'country': 'New Zealand', 'country_id': 554, 'date': 1980, 'players': [{'HAND': 'R', 'PLAYER_NAME': 'Chris Lewis NZL', 'RANKING': 66}]}, {'count': 42, 'country': 'United States', 'country_id': 840, 'date': 1980, 'players': [{'HAND': 'R', 'PLAYER_NAME': 'Tim Gullikson', 'RANKING': 46}, {'HAND': 'L', 'PLAYER_NAME': 'Nick Saviano', 'RANKING': 96}, {'HAND': 'L', 'PLAYER_NAME': 'Jimmy Connors', 'RANKING': 3}, {'HAND': 'L', 'PLAYER_NAME': 'Bruce Manson', 'RANKING': 79}]}, {'count': 3, 'country': 'United States', 'country_id': 840, 'date': 1982, 'players': [{'HAND': 'R', 'PLAYER_NAME': 'Russell Simpson', 'RANKING': 76}]}, {'count': 42, 'country': 'United States', 'country_id': 840, 'date': 1982, 'players': [{'HAND': 'L', 'PLAYER_NAME': 'Van Winitsky', 'RANKING': 46}, {'HAND': 'R', 'PLAYER_NAME': 'Steve Denton', 'RANKING': 24}, {'HAND': 'R', 'PLAYER_NAME': 'Mel Purcell', 'RANKING': 26}]}]
matplotlib strings as labels on x axis
I am building a small tool for data analysis and I have come to the point, where I have to plot the prepared data. The code before this produces the following two lists with equal length. t11 = ['00', '01', '02', '03', '04', '05', '10', '11', '12', '13', '14', '15', '20', '21', '22', '23', '24', '25', '30', '31', '32', '33', '34', '35', '40', '41', '42', '43', '44', '45', '50', '51', '52', '53', '54', '55'] t12 = [173, 135, 141, 148, 140, 149, 152, 178, 135, 96, 109, 164, 137, 152, 172, 149, 93, 78, 116, 81, 149, 202, 172, 99, 134, 85, 104, 172, 177, 150, 130, 131, 111, 99, 143, 194] Based on this, I want to built a histogram with matplotlib.plt.hist. However, there are a couple of problems: 1. t11[x] and t12[x] are connected for all x. Where t11[x] is actually a string. It represents a certain detector combination. For example: '01' tells that the detection was made in the 0th segment of the first detector, and 1st segment of the second detector. My goal is to have each entry from t11 as a labeled point on the x axis. The t12 entry is going to define the hight of the bar above the t11 entry (on a logarithmic y axis) How does one configure such an x axis? 2. This is all very new to me. I could not find anything related in the documentation. Most probably because I did not know what to search for. SO: Is there an "official" name for what I am trying to achieve. This would also help me alot.
Use the xticks command. import matplotlib.pyplot as plt t11 = ['00', '01', '02', '03', '04', '05', '10', '11', '12', '13', '14', '15', '20', '21', '22', '23', '24', '25', '30', '31', '32', '33', '34', '35', '40', '41', '42', '43', '44', '45', '50', '51', '52', '53', '54', '55'] t12 = [173, 135, 141, 148, 140, 149, 152, 178, 135, 96, 109, 164, 137, 152, 172, 149, 93, 78, 116, 81, 149, 202, 172, 99, 134, 85, 104, 172, 177, 150, 130, 131, 111, 99, 143, 194] plt.bar(range(len(t12)), t12, align='center') plt.xticks(range(len(t11)), t11, size='small') plt.show()
For the object oriented API of matplotlib one can plot custom text on the x-ticks of an axis with following code: x = np.arange(2,10,2) y = x.copy() x_ticks_labels = ['jan','feb','mar','apr'] fig, ax = plt.subplots(1,1) ax.plot(x,y) # Set number of ticks for x-axis ax.set_xticks(x) # Set ticks labels for x-axis ax.set_xticklabels(x_ticks_labels, rotation='vertical', fontsize=18)
In matplotlib lingo, you are looking for a way to set custom ticks. It seems you cannot achieve this with the pyplot.hist shortcut. You will need to build your image step by step instead. There is already an answer here on Stack Overflow to question which is very similar to yours and should get you started: Matplotlib - label each bin
Firstly you need to access the axis object: fig, ax = plt.subplots(1,1) then: ax.set_yticks([x for x in range(-10,11)]) ax.set_yticklabels( ['{0:2d}'.format(abs(x)) for x in range(-10, 11)])