What are the Redis capacity requirements to support 50k consumers within one consumer group to consume and process the messages in parallel? Looking for testing an infrastructure for the same scenario and need to understand considerations.
Disclaimer: I worked in a company which used Redis in a somewhat large scale (probably less consumers than your case, but our consumers were very active), however I wasn't from the infrastructure team, but I was involved in some DevOps tasks.
I don't think you will find an exact number, so I'll try to share some tips and tricks to help you:
Be sure to read the entire Redis Admin page. There's a lot of useful information there. I'll highlight some of the tips from there:
Assuming you'll set up a Linux host, edit /etc/sysctl.conf and set a high net.core.somaxconn (RabbitMQ suggests 4096). Check the documentation of tcp-backlog config in redis.conf for an explanation about this.
Assuming you'll set up a Linux host, edit /etc/sysctl.conf and set vm.overcommit_memory = 1. Read below for a detailed explanation.
Assuming you'll set up a Linux host, edit /etc/sysctl.conf and set fs.file-max. This is very important for your use case. The Open File Handles / File Descriptors Limit is essentially the maximum number of file descriptors (each client represents a file descriptor) the SO can handle. Please check the Redis documentation on this. RabbitMQ documentation also present some useful information about it.
If you edit the /etc/sysctl.conf file, run sysctl -p to reload it.
"Make sure to disable Linux kernel feature transparent huge pages, it will affect greatly both memory usage and latency in a negative way. This is accomplished with the following command: echo never > /sys/kernel/mm/transparent_hugepage/enabled." Add this command also to /etc/rc.local to make it permanent over reboot.
In my experience Redis is not very resource-hungry, so I believe you won't have issues with CPU. Memory are directly related to how much data you intend to store in it.
If you set up a server with many cores, consider using more than one Redis Server. Redis is (mostly) single-threaded and will not use all your CPU resources if you use a single instance in a multicore environment.
Redis server also warns about wrong/risky configurations on startup (sorry for the old image):
Explanation on Overcommit Memory (vm.overcommit_memory)
Setting overcommit_memory to 1 says Linux to relax and perform the fork in a more optimistic allocation fashion, and this is indeed what you want for Redis [from Redis FAQ]
There are three possible settings for vm.overcommit_memory.
0 (zero): Check if enough memory is available and, if so, allow the allocation. If there isn’t enough memory, deny the request and return an error to the application.
1 (one): Permit memory allocation in excess of physical RAM plus swap, as defined by vm.overcommit_ratio. The vm.overcommit_ratio parameter is a
percentage added to the amount of RAM when deciding how much the kernel can overcommit. For instance, a vm.overcommit_ratio of 50 and 1 GB of
RAM would mean the kernel would permit up to 1.5 GB, plus swap, of memory to be allocated before a request failed.
2 (two): The kernel’s equivalent of "all bets are off", a setting of 2 tells the kernel to always return success to an application’s request for memory. This is absolutely as weird and scary as it sounds.
Related
We usually use redis for caching in the Spring‘s project. My problem is that since redis is single-threaded, then our concurrent requests become serialized requests when accessing redis. then,what is the significance of using redis?
Is it only because of "It's not very frequent that CPU becomes your bottleneck with Redis, as usually Redis is either memory or network bound.
......
using pipelining Redis running on an average Linux system can deliver even 1 million requests per second......
"?
I am learning redis, Redis document FAQ
You've basically asked two questions in one question:
What is the significance of using Redis.
Well, Redis is known to be fast because it keeps the data in memory. If you ask whether being a single-threaded application is very restrictive - well, its a product, that works like this by design, maybe it could be even more performant if it was multithreaded, it depends on actual implementation under the hood after all.
In any case, it offers much more than just a "get data in memory":
- Many primitives to work with
- Configurable persistence
- Replication of data
And much more
If the question is whether the in-memory cache will be faster (you've mentioned Spring framework, so you're at Java Land) - then yes.
In fact, Spring Cache support Guava Cache (spring 5/spring boot 2 use Caffeine for the same purpose instead) - and yes it will be faster in a head-to-head comparison with Redis. But what if you have a distributed application with many instances and one instance calculated something and put it to cache, how do you get the same information from another instance without distributing the information between the instances. Well, there are tools like Hazelcast but it's out of scope for this question, the point is that when the application is beyond basic, the tasks like cache synchronization /keeping it up-to-date becomes much less obvious.
If you can deliver 1 million operations per second.
Now this question is too vague to answer:
What is the hardware that runs Redis?
What are the network configurations? (after all Redis calls are done over the network)
How often do you persist on disk (Redis has configurations for that)
Do you use replication and split the load between many Redis servers reaching an overall much faster throughput?
What commands exactly are being running under that hood?
In any case, when it comes to benchmarking you can set up your system in the option way and use the tool offered by Redis itself:
Redis Benchmarking Chapter in Redis tutorial
The tool is called redis-benchmark you can run it with various parameters and see how fast redis really is:
Here is an example (I encourage you to read the full article in the link):
$ redis-benchmark -t set,lpush -n 100000 -q
SET: 74239.05 requests per second
LPUSH: 79239.30 requests per second
This says: Connect to redis server available on localhost, run (-n) 100000 requests in a quiet mode (-q parameter) and run only tests specific for two commands: set and lpush
I'm trying to deploy a scalable web application on google cloud.
I have kubernetes deployment which creates multiple replicas of apache+php pods. These have cpu/memory resources/limits set.
Lets say that memory limit per replica is 2GB. How do I properly configure apache to respect this limit?
I can modify maximum process count and/or maximum memory per process to prevent memory overflow (thus the replicas will not be killed because of OOM). But this does create new problem, this settings will also limit maximum number of requests that my replica could handle. In case of DDOS attack (or just more traffic) the bottleneck could be the maximum process limit, not memory/cpu limit. I think that this could happen pretty often, as these limits are set to worst case scenario, not based on average traffic.
I want to configure autoscaler so that it will create multiple replicas in case of such event, not only when the cpu/memory usage is near limit.
How do I properly solve this problem? Thanks for help!
I would recommend doing the following instead of trying to configuring apache to limit itself internally:
Enforce resource limits on pods. i.e let them OOM. (but see NOTE*)
Define an autoscaling metric for your deployment based on your load.
Setup a namespace wide resource-quota. This enforeces a clusterwide limit on the resources pods in that namespace can use.
This way you can let your Apache+PHP pods handle as many requests as possible until they OOM, at which point they respawn and join the pool again, which is fine* (because hopefully they're stateless) and at no point does your over all resource utilization exceed the resource limits (quotas) enforced on the namespace.
* NOTE: This is only true if you're not doing fancy stuff like websockets or stream based HTTP, in which case an OOMing Apache instance takes down other clients that are holding an open socket to the instance. If you want, you should always be able to enforce limits on apache in terms of the number of threads/processes it runs anyway, but it's best not to unless you have solid need for it. With this kind of setup, no matter what you do, you'll not be able to evade DDoS attacks of large magnitudes. You're either doing to have broken sockets (in the case of OOM) or request timeouts (not enough threads to handle requests). You'd need far more sophisticated networking/filtering gear to prevent "good" traffic from taking a hit.
We recently migrated to Couchbase 3.1.0. The odd thing is - when performing full backup of a bucket, web UI alerts "Hard Out Of Memory Error. Bucket X on node Y is full. All memory allocated to this bucket is used for metadata". The numbers from RAM usage in the web UI contradict that - about 75% is used, but not 100%. I looked into the logs, but haven't find any similar errors there.
Is that even normal?
This is a known issue in the Couchbase Server 3.x releases.
To understand the problem, we must also first understand Database Change Protocol (DCP), the protocol used to transfer data throughout the system. At a high level the flow-control for DCP is as follows:
The Consumer creates a connection with the Producer and sends an Open Connection message. The Consumer then sends a Control message to indicate per stream flow control. This messages will contain “stream_buffer_size” in the key section and the buffer size the Consumer would like each stream to have in the value section.
The Consumer will then start opening streams so that is can receive data from the server.
The Producer will then continue to send data for the stream that has buffer space available until it reaches the maximum send size.
Steps 1-3 continue until the connection is closed, as the Consumer continues to consume items from the stream.
The cbbackup utility does not implement any flow control (data buffer limits) however, and it will try to stream all vbuckets from all nodes at once, with no cap on the buffer size.
While this does not mean that it will use the same amount of memory as your overall data size (as the streams are being drained slowly by the cbbackup process), it does mean that a large memory overhead is required to be able to store the data streams.
When you are in a heavy DGM (disk greater than memory) scenario, the amount of memory required to store the streams is likely to grow more rapidly than cbbackup can drain them as it is streaming large quantities of data off of disk, leading to very large streams, which take up a lot of memory as previously mentioned.
The slightly misleading message about metadata taking up all of the memory is displayed as there is no memory left for the data, so all of the remaining memory is allocated to the metadata, which when using value eviction cannot be ejected from memory.
The reason that this only affects Couchbase Server versions prior to 4.0 is that in 4.0 a server-side improvement to DCP stream management was made that allows the pausing of DCP streams to keep the memory footprint down, this is tracked as MB-12179.
As a result, you should not experience the same issue on Couchbase Server versions 4.x+, regardless of how DGM your bucket is.
Workaround
If you find yourself in a situation where this issue is occurring, then terminating the backup job should release all of the memory consumed by the streams immediately.
Unfortunately if you have already had most of your data evicted from memory as a result of the backup, then you will have to retrieve a large quantity of data off of disk instead of RAM for a small period of time, which is likely to increase your get latencies.
Over time 'hot' data will be brought into memory when requested, so this will only be a problem for a small period of time, however this is still a fairly undesirable situation to be in.
The workaround to avoid this issue completely is to only stream a small number of vbuckets at once when performing the backup, as opposed to all vbuckets which cbbackup does by default.
This can be achieved using cbbackupwrapper which comes bundled with all Couchbase Server releases 3.1.0 and later, details of using cbbackupwrapper can be found in the Couchbase Server documentation.
In particular the parameter to pay attention to is the -n flag, which specifies the number of vbuckets to be backed up in a batch at once.
As the name suggests, cbbackupwrapper is simply a wrapper script on top of cbbackup which partitions the vbuckets up and automatically handles all of the directory creation and backup generation, while still using cbbackup under the hood.
As an example, with a batch size of 50, cbbackupwrapper would backup vbuckets 0-49 first, followed by 50-99, then 100-149 etc.
It is suggested that you test with cbbackupwrapper in a testing environment which mirrors your production environment to find a suitable value for -n and -P (which controls how many backup processes run at once, the combination of these two controls the amount of memory pressure caused by backup as well as the overall speed).
You should not find that lowering the value of -n from its default 100 decreases the backup speed, in some cases you may find that the backup speed actually increases due to the fact that there is far less memory pressure on the server.
You may however wish to sensibly adjust the -P parameter if you wish to speed up the backup further.
Below is an example command:
cbbackupwrapper http://[host]:8091 [backup_dir] -u [user_name] -p [password] -n 50
It should be noted that if you use cbbackupwrapper to perform your backup then you must also use cbrestorewrapper to restore the data, as cbrestorewrapper is automatically aware of the directory structures used by cbbackupwrapper.
When you run a full backup, by default the backup tool streams data from all nodes over the network. This is not the best way, because it causes a lot of extra load and increased memory usage, especially of you run cbbackup on one of the Couchbase nodes. I would use the data-copy mode of cbbackup, which copies data directly from the files on disk:
> sudo /opt/couchbase/bin/cbbackup couchstore-files:///opt/couchbase/var/lib/couchbase/data/ /tmp/backup
Of course, change the data path to wherever your Couchbase data is actually stored. (In my example it runs as sudo because only root has read access to /opt/couchbase/blabla..) Do this on every node, then collect all the backup folders and put them somewhere. Note that the backups are very compressible, so you might want to zip them before copying over the network.
I understand that Redis serves all data from memory, but does it persist as well across server reboot so that when the server reboots it reads into memory all the data from disk. Or is it always a blank store which is only to store data while apps are running with no persistence?
I suggest you read about this on http://redis.io/topics/persistence . Basically you lose the guaranteed persistence when you increase performance by using only in-memory storing. Imagine a scenario where you INSERT into memory, but before it gets persisted to disk lose power. There will be data loss.
Redis supports so-called "snapshots". This means that it will do a complete copy of whats in memory at some points in time (e.g. every full hour). When you lose power between two snapshots, you will lose the data from the time between the last snapshot and the crash (doesn't have to be a power outage..). Redis trades data safety versus performance, like most NoSQL-DBs do.
Most NoSQL-databases follow a concept of replication among multiple nodes to minimize this risk. Redis is considered more a speedy cache instead of a database that guarantees data consistency. Therefore its use cases typically differ from those of real databases:
You can, for example, store sessions, performance counters or whatever in it with unmatched performance and no real loss in case of a crash. But processing orders/purchase histories and so on is considered a job for traditional databases.
Redis server saves all its data to HDD from time to time, thus providing some level of persistence.
It saves data in one of the following cases:
automatically from time to time
when you manually call BGSAVE command
when redis is shutting down
But data in redis is not really persistent, because:
crash of redis process means losing all changes since last save
BGSAVE operation can only be performed if you have enough free RAM (the amount of extra RAM is equal to the size of redis DB)
N.B.: BGSAVE RAM requirement is a real problem, because redis continues to work up until there is no more RAM to run in, but it stops saving data to HDD much earlier (at approx. 50% of RAM).
For more information see Redis Persistence.
It is a matter of configuration. You can have none, partial or full persistence of your data on Redis. The best decision will be driven by the project's technical and business needs.
According to the Redis documentation about persistence you can set up your instance to save data into disk from time to time or on each query, in a nutshell. They provide two strategies/methods AOF and RDB (read the documentation to see details about then), you can use each one alone or together.
If you want a "SQL like persistence", they have said:
The general indication is that you should use both persistence methods if you want a degree of data safety comparable to what PostgreSQL can provide you.
The answer is generally yes, however a fuller answer really depends on what type of data you're trying to store. In general, the more complete short answer is:
Redis isn't the best fit for persistent storage as it's mainly performance focused
Redis is really more suitable for reliable in-memory storage/cacheing of current state data, particularly for allowing scalability by providing a central source for data used across multiple clients/servers
Having said this, by default Redis will persist data snapshots at a periodic interval (apparently this is every 1 minute, but I haven't verified this - this is described by the article below, which is a good basic intro):
http://qnimate.com/redis-permanent-storage/
TL;DR
From the official docs:
RDB persistence [the default] performs point-in-time snapshots of your dataset at specified intervals.
AOF persistence [needs to be explicitly configured] logs every write operation received by the server, that will be played again at server startup, reconstructing the
original dataset.
Redis must be explicitly configured for AOF persistence, if this is required, and this will result in a performance penalty as well as growing logs. It may suffice for relatively reliable persistence of a limited amount of data flow.
You can choose no persistence at all.Better performance but all the data lose when Redis shutting down.
Redis has two persistence mechanisms: RDB and AOF.RDB uses a scheduler global snapshooting and AOF writes update to an apappend-only log file similar to MySql.
You can use one of them or both.When Redis reboots,it constructes data from reading the RDB file or AOF file.
All the answers in this thread are talking about the possibility of redis to persist the data: https://redis.io/topics/persistence (Using AOF + after every write (change)).
It's a great link to get you started, but it is defenently not showing you the full picture.
Can/Should You Really Persist Unrecoverable Data/State On Redis?
Redis docs does not talk about:
Which redis providers support this (AOF + after every write) option:
Almost none of them - redis labs on the cloud does NOT provide this option. You may need to buy the on-premise version of redis-labs to support it. As not all companies are willing to go on-premise, then they will have a problem.
Other Redis Providers does not specify if they support this option at all. AWS Cache, Aiven,...
AOF + after every write - This option is slow. you will have to test it your self on your production hardware to see if it fits your requirements.
Redis enterpice provide this option and from this link: https://redislabs.com/blog/your-cloud-cant-do-that-0-5m-ops-acid-1msec-latency/ let's see some banchmarks:
1x x1.16xlarge instance on AWS - They could not achieve less than 2ms latency:
where latency was measured from the time the first byte of the request arrived at the cluster until the first byte of the ‘write’ response was sent back to the client
They had additional banchmarking on a much better harddisk (Dell-EMC VMAX) which results < 1ms operation latency (!!) and from 70K ops/sec (write intensive test) to 660K ops/sec (read intensive test). Pretty impresive!!!
But it defenetly required a (very) skilled devops to help you create this infrastructure and maintain it over time.
One could (falsy) argue that if you have a cluster of redis nodes (with replicas), now you have full persistency. this is false claim:
All DBs (sql,non-sql,redis,...) have the same problem - For example, running set x 1 on node1, how much time it takes for this (or any) change to be made in all the other nodes. So additional reads will receive the same output. well, it depends on alot of fuctors and configurations.
It is a nightmare to deal with inconsistency of a value of a key in multiple nodes (any DB type). You can read more about it from Redis Author (antirez): http://antirez.com/news/66. Here is a short example of the actual ngihtmare of storing a state in redis (+ a solution - WAIT command to know how much other redis nodes received the latest change change):
def save_payment(payment_id)
redis.rpush(payment_id,”in progress”) # Return false on exception
if redis.wait(3,1000) >= 3 then
redis.rpush(payment_id,”confirmed”) # Return false on exception
if redis.wait(3,1000) >= 3 then
return true
else
redis.rpush(payment_id,”cancelled”)
return false
end
else
return false
end
The above example is not suffeint and has a real problem of knowing in advance how much nodes there actually are (and alive) at every moment.
Other DBs will have the same problem as well. Maybe they have better APIs but the problem still exists.
As far as I know, alot of applications are not even aware of this problem.
All in all, picking more dbs nodes is not a one click configuration. It involves alot more.
To conclude this research, what to do depends on:
How much devs your team has (so this task won't slow you down)?
Do you have a skilled devops?
What is the distributed-system skills in your team?
Money to buy hardware?
Time to invest in the solution?
And probably more...
Many Not well-informed and relatively new users think that Redis is a cache only and NOT an ideal choice for Reliable Persistence.
The reality is that the lines between DB, Cache (and many more types) are blurred nowadays.
It's all configurable and as users/engineers we have choices to configure it as a cache, as a DB (and even as a hybrid).
Each choice comes with benefits and costs. And this is NOT an exception for Redis but all well-known Distributed systems provide options to configure different aspects (Persistence, Availability, Consistency, etc). So, if you configure Redis in default mode hoping that it will magically give you highly reliable persistence then it's team/engineer fault (and NOT that of Redis).
I have discussed these aspects in more detail on my blog here.
Also, here is a link from Redis itself.
For example, I execute "sudo named" several times, so there are several named processes running. When I use "pidof named", I get several pids.
I want to calculate the CPU usage rate of the BIND process,so I need to get some parameters from "/proc/pid/stat", so I need the pid of the named process which is really providing the domain resolution service.
What's the difference between the named process which is providing the service and the others? Could you give me a detailed explanation?
thanks very much~
(It's my first time to use stackoverflow , to use English to ask quetions , please ignore those syntax errors.)
There should be just one named running, the scripts that manage the service ensure that. You shouldn't start it like that, you should use what your distribution uses to start it, probably something along the lines of service bind start (that is probably a RedHat-ism), or /etc/rc.d/bind start (for bog-standard SysVinit).
I was responsible for DNS for quite some time here. Some tips:
DNS is a very critical service, configure and monitor with extreme care. Do read up on setting up and managing this, don't go ahead until you are absolutely clear.
Get somebody as a backup for the case that you aren't available, and make sure they understand the previous point.
DNS isn't CPU intensive (OK, with signed domains and that newfangled stuff that might have changed), it is memory intensive (and network intensive, or at least sensitive to delays). Our main DNS server was running for months at a time, and clocked up some half hour of CPU time during that kind of period IIRC.
Separate your master server (responsible for the domain(s) from the servers queried by clients (caching servers). There have been vulnerabilities where malformed questions or "answers" to questions that hadn't been asked soiled the database
The master server will have all the domain information in RAM, make sure you have got enough of it
Make sure all machines under your jurisdiction use the same caching server. It makes no sense for more than one, that destroys the idea of cache.
The caching servers collect immense amounts of data over time. This data rarely is performance critical, so configure them with plenty of swap space to accommodate overflows.
Bind issues as many named processes as many CPUs you have:
man named:
-n #cpus
Create #cpus worker threads to take advantage of multiple CPUs. If not specified, named will try to determine the number of CPUs present and create one thread per CPU. If it is unable to determine the number of CPUs, a single worker thread will be created.
External source:
https://unix.stackexchange.com/questions/140986/multiple-named-processes-for-bind9-in-debian