Using AI to detect damaged parts - tensorflow

I need to use computer vision to detect damaged parts of cars. I have the images of car before and after damage, how do I use computer vision/ AI to detect that, in this case, left headlight and bumper is damaged. I have a dataset of 70 similar image pairs.
I tried image processing, by overlaying the images on top of each to detect damage. But not all images in the dataset fits when overlaid.
I can Mask RCNN to detect the damaged region but how do I reduce it to the parts being damaged?
Before Damage
After Damage

Check out Mask R-CNN. You can train a model with multiple images of damage on cars. Just annotate your data, then train it. Once you have trained, you can then use the splash feature to only highlight areas that you want, i.e, damage. Its fairly easy to set up, and it seems perfect in your case.

Related

Creating a good training set for one-class detection

I am training a one-class (hands) object detector on the egohands data set. My problem is that it detects way too many things as hands. It feels like it is detecting everything that is skin-colored as a hand.
I assume the most likely explanation for this is that my training set is poor, as every single image of the set contains hands, and also almost no other skin-toned elements are on the images. I guess it is necessary to also present the network images that are not what you try to detect?
I just want to verify I am right with my assumptions, before investing lots of time into creating a better training set. Therefore I am very grateful for every hint want I am doing wrong.
Object detection preprocessing is critical step, take extra caution guards as detection networks are sensitive to geometrical transformations.
Some proven data augmentation methods include:
1.Random geometry transformation for random cropping (with constraints),
2.Random expansion,
3.Random horizontal flip
4.Random resize (with random interpolation).
5.Random color jittering for brightness, hue, saturation, and contrast

Reverse Image search (for image duplicates) on local computer

I have a bunch of poor quality photos that I extracted from a pdf. Somebody I know has the good quality photo's somewhere on her computer(Mac), but it's my understanding that it will be difficult to find them.
I would like to
loop through each poor quality photo
perform a reverse image search using each poor quality photo as the query image and using this persons computer as the database to search for the higher quality images
and create a copy of each high quality image in one destination folder.
Example pseudocode
for each image in poorQualityImages:
search ./macComputer for a higherQualityImage of image
copy higherQualityImage to ./higherQualityImages
I need to perform this action once.
I am looking for a tool, github repo or library which can perform this functionality more so than a deep understanding of content based image retrieval.
There's a post on reddit where someone was trying to do something similar
imgdupes is a program which seems like it almost achieves this, but I do not want to delete the duplicates, I want to copy the highest quality duplicate to a destination folder
Update
Emailed my previous image processing prof and he sent me this
Off the top of my head, nothing out of the box.
No guaranteed solution here, but you can narrow the search space.
You’d need a little program that outputs the MSE or SSIM similarity
index between two images, and then write another program or shell
script that scans the hard drive and computes the MSE between each
image on the hard drive and each query image, then check the images
with the top X percent similarity score.
Something like that. Still not maybe guaranteed to find everything
you want. And if the low quality images are of different pixel
dimensions than the high quality images, you’d have to do some image
scaling to get the similarity index. If the poor quality images have
different aspect ratios, that’s even worse.
So I think it’s not hard but not trivial either. The degree of
difficulty is partly dependent on the nature of the corruption in the
low quality images.
UPDATE
Github project I wrote which achieves what I want
What you are looking for is called image hashing
. In this answer you will find a basic explanation of the concept, as well as a go-to github repo for plug-and-play application.
Basic concept of Hashing
From the repo page: "We have developed a new image hash based on the Marr wavelet that computes a perceptual hash based on edge information with particular emphasis on corners. It has been shown that the human visual system makes special use of certain retinal cells to distinguish corner-like stimuli. It is the belief that this corner information can be used to distinguish digital images that motivates this approach. Basically, the edge information attained from the wavelet is compressed into a fixed length hash of 72 bytes. Binary quantization allows for relatively fast hamming distance computation between hashes. The following scatter plot shows the results on our standard corpus of images. The first plot shows the distances between each image and its attacked counterpart (e.g. the intra distances). The second plot shows the inter distances between altogether different images. While the hash is not designed to handle rotated images, notice how slight rotations still generally fall within a threshold range and thus can usually be matched as identical. However, the real advantage of this hash is for use with our mvp tree indexing structure. Since it is more descriptive than the dct hash (being 72 bytes in length vs. 8 bytes for the dct hash), there are much fewer false matches retrieved for image queries.
"
Another blogpost for an in-depth read, with an application example.
Available Code and Usage
A github repo can be found here. There are obviously more to be found.
After importing the package you can use it to generate and compare hashes:
>>> from PIL import Image
>>> import imagehash
>>> hash = imagehash.average_hash(Image.open('test.png'))
>>> print(hash)
d879f8f89b1bbf
>>> otherhash = imagehash.average_hash(Image.open('other.bmp'))
>>> print(otherhash)
ffff3720200ffff
>>> print(hash == otherhash)
False
>>> print(hash - otherhash)
36
The demo script find_similar_images also on the mentioned github, illustrates how to find similar images in a directory.
Premise
I'll focus my answer on the image processing part, as I believe implementation details e.g. traversing a file system is not the core of your problem. Also, all that follows is just my humble opinion, I am sure that there are better ways to retrieve your image of which I am not aware. Anyway, I agree with what your prof said and I'll follow the same line of thought, so I'll share some ideas on possible similarity indexes you might use.
Answer
MSE and SSIM - This is a possible solution, as suggested by your prof. As I assume the low quality images also have a different resolution than the good ones, remember to downsample the good ones (and not upsample the bad ones).
Image subtraction (1-norm distance) - Subtract two images -> if they are equal you'll get a black image. If they are slightly different, the non-black pixels (or the sum of the pixel intensity) can be used as a similarity index. This is actually the 1-norm distance.
Histogram distance - You can refer to this paper: https://www.cse.huji.ac.il/~werman/Papers/ECCV2010.pdf. Comparing two images' histograms might be potentially robust for your task. Check out this question too: Comparing two histograms
Embedding learning - As I see you included tensorflow, keras or pytorch as tags, let's consider deep learning. This paper came to my
mind: https://arxiv.org/pdf/1503.03832.pdf The idea is to learn a
mapping from the image space to a Euclidian space - i.e. compute an
embedding of the image. In the embedding hyperspace, images are
points. This paper learns an embedding function by minimizing the
triplet loss. The triplet loss is meant to maximize the distance
between images of different classes and minimize the distance between
images of the same class. You could train the same model on a Dataset
like ImageNet. You could augment the dataset with by lowering the
quality of the images, in order to make the model "invariant" to
difference in image quality (e.g. down-sampling followed by
up-sampling, image compression, adding noise, etc.). Once you can
compute embedding, you could compute the Euclidian distance (as a
substitute of the MSE). This might work better than using MSE/SSIM as a similarity indexes. Repo of FaceNet: https://github.com/timesler/facenet-pytorch. Another general purpose approach (not related to faces) which might help you: https://github.com/zegami/image-similarity-clustering.
Siamese networks for predicting similarity score - I am referring to this paper on face verification: http://bmvc2018.org/contents/papers/0410.pdf. The siamese network takes two images as input and outputs a value in the [0, 1]. We can interpret the output as the probability that the two images belong to the same class. You can train a model of this kind to predict 1 for image pairs of the following kind: (good quality image, artificially degraded image). To degrade the image, again, you can combine e.g. down-sampling followed by
up-sampling, image compression, adding noise, etc. Let the model predict 0 for image pairs of different classes (e.g. different images). The output of the network can e used as a similarity index.
Remark 1
These different approaches can also be combined. They all provide you with similarity indexes, so you can very easily average the outcomes.
Remark 2
If you only need to do it once, the effort you need to put in implementing and training deep models might be not justified. I would not suggest it. Still, you can consider it if you can't find any other solution and that Mac is REALLY FULL of images and a manual search is not possible.
If you look at the documentation of imgdupes you will see there is the following option:
--dry-run
dry run (do not delete any files)
So if you run imgdupes with --dry-run you will get a listing of all the duplicate images but it will not actually delete anything. You should be able to process that output to move the images around as you need.
Try similar image finder I have developed to address this problem.
There is an explanation and the algorithm there, so you can implement your own version if needed.

Should the size of the photos be the same for deep learning?

I have lots of image (about 40 GB).
My images are small but they don't have same size.
My images aren't from natural things because I made them from a signal so all pixels are important and I can't crop or delete any pixel.
Is it possible to use deep learning for this kind of images with different shapes?
All pixels are important, please take this into consideration.
I want a model which does not depend on a fixed size input image. Is it possible?
Without knowing what you're trying to learn from the data, it's tough to give a definitive answer:
You could pad all the data at the beginning (or end) of the signal so
they're all the same size. This allows you to keep all the important
pixels, but adds irrelevant information to the image that the network
will most likely ignore.
I've also had good luck with activations where you take a pretrained
network and pull features from the image at a certain part of the
network regardless of size (as long as it's larger than the network
input size). Then run through a classifier.
https://www.mathworks.com/help/deeplearning/ref/activations.html#d117e95083
Or you could window your data, and only process smaller chunks at one
time.
https://www.mathworks.com/help/audio/examples/cocktail-party-source-separation-using-deep-learning-networks.html

Image Selection for Training Visual Recognition

I am training a classifier for recognizing certain objects in an image. I am using the Watson Visual Recognition API but I would assume that the same question applies to other recognition APIs as well.
I've collected 400 pictures of something - e.g. dogs.
Before I train Watson, I can delete pictures that may throw things off. Should I delete pictures of:
Multiple dogs
A dog with another animal
A dog with a person
A partially obscured dog
A dog wearing glasses
Also, would dogs on a white background make for better training samples?
Watson also takes negative examples. Would cats and other small animals be good negative examples? What else?
You are right that this is a general issue for all kinds of custom classifiers and recognizers - be it vize.it, clarifai, IBM Watson, or training a neural network on your own say in caffe. (Sorted by the number of example images you need to use.)
The important thing you need to ask is how are you going to use the classifier? What are the real images you will feed the machine to predict the objects shown? As a general rule, your training images should be as similar to predict-time images as possible - both in what they depict (kinds and variety of objects) and how they depict it (e.g. backgrounds). Neural networks are super-powerful and if you feed them enough images, they will learn even the hard cases.
Maybe you want to find dog images in user's folders - which will include family photos, screenshots and document scans. Reflect that variety in the training set. Ask the user if a dog with another animal should be tagged as a dog photo.
Maybe you want to find dog images on a wilderness photo trap. Just use various images taken by that photo trap (or several photo traps, if it's a whole network).
In short — tailor your sample images to the task at hand!

using HAAR training for post-it note recognition

I need to be able to detect a variety of coloured post-it notes via a Microsoft Kinect video stream. I have tried using Emgucv for edge detection but it doesn't seem to locate the vertices/edges and also colour segmentation/detection however considering the variety of colours that may not be robust enough.
I am attempting to use HAAR classification. Can anyone suggest the best variety of positive/negative images to use. For example, for the positive images should I take pictures of many different coloured post-it notes in various lighting conditions and orientations? Seeing as it is quite a simple shape ( a square) is using HAAR classification over-complicating things?
I haar classifiers are typically used on black and white images and trigger primarily on morphologic edge like feature. Seems like if you want to find post it notes in an image the easiest method would be to look at colors (since they come in very distinct colors). Have you tried training a SVM of Random forest classifier to detect post it notes based on just color? Once you've identified areas in the image that are probably post it notes you could start looking at things like the shape as additional validation that you are indeed looking at a post it note.
Take a look at the following as an example of how to find rectangles in an image using hough transform:
https://opencv-code.com/tutorials/automatic-perspective-correction-for-quadrilateral-objects/