Thanks to #RedBassett for this Ressource (Kotlin problem solving): https://kotlinlang.org/docs/tutorials/koans.html
I'm aware this question exists here:
Creating a 4 digit Random Number using java with no repetition in digits
but I'm new to Kotlin and would like to explore the direct Kotlin features.
So as the title suggests, I'm trying to find a Kotlin specific way to nicely solve generate a 4 digit number (after that it's easy to make it adaptable for length x) without repeating digits.
This is my current working solution and would like to make it more Kotlin. Would be very grateful for some input.
fun createFourDigitNumber(): Int {
var fourDigitNumber = ""
val rangeList = {(0..9).random()}
while(fourDigitNumber.length < 4)
{
val num = rangeList().toString()
if (!fourDigitNumber.contains(num)) fourDigitNumber +=num
}
return fourDigitNumber.toInt()
}
So the range you define (0..9) is actually already a sequence of numbers. Instead of iterating and repeatedly generating a new random, you can just use a subset of that sequence. In fact, this is the accepted answer's solution to the question you linked. Here are some pointers if you want to implement it yourself to get the practice:
The first for loop in that solution is unnecessary in Kotlin because of the range. 0..9 does the same thing, you're on the right track there.
In Kotlin you can call .shuffled() directly on the range without needing to call Collections.shuffle() with an argument like they do.
You can avoid another loop if you create a string from the whole range and then return a substring.
If you want to look at my solution (with input from others in the comments), it is in a spoiler here:
fun getUniqueNumber(length: Int) = (0..9).shuffled().take(length).joinToString('')
(Note that this doesn't gracefully handle a length above 10, but that's up to you to figure out how to implement. It is up to you to use subList() and then toString(), or toString() and then substring(), the output should be the same.)
Related
Union types, also known as sum types are a powerful language feature that I find myself using often in TypeScript
something along the lines of:
let a: string | number = “hello”
a = 3
How would I achieve this type of behavior in kotlin?
I saw some people talking about using inheritance and sealed classes to accomplish this but it looks like if you want to use that approach with primitives (such as String and Int) then one would have to write wrappers around those types to access the underlying value.
Im wondering if there is a more pragmatic solution.
There is an issue in Kotlin issue tracker: Denotable union and intersection types (it also contains links to a few previous discussions). The last update from the team is
Roman Elizarov commented 19 Nov 2021 18:14
Short update on this issue. This is an interesting and important feature, but it is really hard to integrate into the language in a backward-compatible and pragmatic way. We'll start working on it fully when we release the new K2 compiler and the best compiler engineers from our team will be able to start looking into it.
As far as I know, there isn't really a "pretty" way to do it in kotlin
One way to achieve a variable that can hold strings and ints could look like that:
var x: Any = 5
x = "hello"
but as you can notice, X can hold any type not only strings and ints, but you could use the "Either" class, from Arrow library (If I'm not mistaken) which allows such behaviour:
var x = Either<Int, String>(5)
Either way, I'm not really sure why would you need such a variable
I am trying to obtain the best delimiter for my CSV file, I've seen answers that find the biggest size of the header row. Now instead of doing the standard method that would look something like this:
val supportedDelimiters: Array<Char> = arrayOf(',', ';', '|', '\t')
fun determineDelimiter(headerRow): Char {
var headerLength = 0
var chosenDelimiter =' '
supportedDelimiters.forEach {
if (headerRow.split(it).size > headerLength) {
headerLength = headerRow.split(it).size
chosenDelimiter = it
}
}
return chosenDelimiter
}
I've been trying to do it with some in-built Kotlin collections methods like filter or maxOf, but to no avail (the code below does not work).
fun determineDelimiter(headerRow: String): Char {
return supportedDelimiters.filter({a,b -> headerRow.split(a).size < headerRow.split(b)})
}
Is there any way I could do it without forEach?
Edit: The header row could look something like this:
val headerRow = "I;am;delimited;with;'semi,colon'"
I put the '' over an entry that could contain other potential delimiter
You're mostly there, but this seems simpler than you think!
Here's one answer:
fun determineDelimiter(headerRow: String)
= supportedDelimiters.maxByOrNull{ headerRow.split(it).size } ?: ' '
maxByOrNull() does all the hard work: you just tell it the number of headers that a delimiter would give, and it searches through each delimiter to find which one gives the largest number.
It returns null if the list is empty, so the method above returns a space character, like your standard method. (In this case we know that the list isn't empty, so you could replace the ?: ' ' with !! if you wanted that impossible case to give an error, or you could drop it entirely if you wanted it to give a null which would be handled elsewhere.)
As mentioned in a comment, there's no foolproof way to guess the CSV delimiter in general, and so you should be prepared for it to pick the wrong delimiter occasionally. For example, if the intended delimiter was a semicolon but several headers included commas, it could wrongly pick the comma. Without knowing any more about the data, there's no way around that.
With the code as it stands, there could be multiple delimiters which give the same number of headers; it would simply pick the first. You might want to give an error in that case, and require that there's a unique best delimiter. That would give you a little more confidence that you've picked the right one — though there's still no guarantee. (That's not so easy to code, though…)
Just like gidds said in the comment above, I would advise against choosing the delimiter based on how many times each delimiter appears. You would get the wrong answer for a header row like this:
Type of shoe, regardless of colour, even if black;Size of shoe, regardless of shape
In the above header row, the delimiter is obviously ; but your method would erroneously pick ,.
Another problem is that a header column may itself contain a delimiter, if it is enclosed in quotes. Your method doesn't take any notice of possible quoted columns. For this reason, I would recommend that you give up trying to parse CSV files yourself, and instead use one of the many available Open Source CSV parsers.
Nevertheless, if you still want to know how to pick the delimiter based on its frequency, there are a few optimizations to readability that you can make.
First, note that Kotlin strings are iterable; therefore you don't have to use a List of Char. Use a String instead.
Secondly, all you're doing is counting the number of times a character appears in the string, so there's no need to break the string up into pieces just to do that. Instead, count the number of characters directly.
Third, instead of finding the maximum value by hand, take advantage of what the standard library already offers you.
const val supportedDelimiters = ",;|\t"
fun determineDelimiter(headerRow: String): Char =
supportedDelimiters.maxBy { delimiter -> headerRow.count { it == delimiter } }
fun main() {
val headerRow = "one,two,three;four,five|six|seven"
val chosenDelimiter = determineDelimiter(headerRow)
println(chosenDelimiter) // prints ',' as expected
}
I'm using val globalList = listOf("a1" to "b1", "a2" to "b2") to create a large list of Pairs of strings.
All is fine until you try to put more than 1000 Pairs into a List. The compiler either takes > 5 minutes or just crashes (Both in IntelliJ and Android Studio).
Same happens if you use simple lists of Strings instead of Pairs.
Is there a better way / best practice to include large lists in your source code without resorting to a database?
You can replace a listOf(...) expression with a list created using a constructor or a factory function and adding the items to it:
val globalList: List<Pair<String, String>> = mutableListOf().apply {
add("a1" to "b1")
add("a2" to "b2")
// ...
}
This is definitely a simpler construct for the compiler to analyze.
If you need something quick and dirty instead of data files, one workaround is to use a large string, then split and map it into a list. Here's an example mapping into a list of Ints.
val onCommaWhitespace = "[\\s,]+".toRegex() // in this example split on commas w/ whitespace
val bigListOfNumbers: List<Int> = """
0, 1, 2, 3, 4,
:
:
:
8187, 8188, 8189, 8190, 8191
""".trimIndent()
.split(onCommaWhitespace)
.map { it.toInt() }
Of course for splitting into a list of Strings, you'd have to choose an appropriate delimiter and regex that don't interfere with the actual data set.
There's no good way to do what you want; for something that size, reading the values from a data file (or calculating them, if that were possible) is a far better solution all round — more maintainable, much faster to compile and run, easier to read and edit, less likely to cause trouble with build tools and frameworks…
If you let the compiler finish, its output will tell you the problem. (‘Always read the error messages’ should be one of the cardinal rules of development!)
I tried hotkey's version using apply(), and it eventually gave this error:
…
Caused by: org.jetbrains.org.objectweb.asm.MethodTooLargeException: Method too large: TestKt.main ()V
…
There's the problem: MethodTooLargeException. The JVM allows only 65535 bytes of bytecode within a single method; see this answer. That's the limit you're coming up against here: once you have too many entries, its code would exceed that limit, and so it can't be compiled.
If you were a real masochist, you could probably work around this to an extent by splitting the initialisation across many methods, keeping each one's code just under the limit. But please don't! For the sake of your colleagues, for the sake of your compiler, and for the sake of your own mental health…
I have a basic question for my general knowledge of Kotlin concerning the mathematical operators:
I was writing an equation and I mistakenly put the plus sign on the second line which caused my equation not to work as on the examples below:
val x = 2 + 3 //x = 5 CORRECT
val x = 2 +
3 //x = 5 CORRECT
val x = 2
+ 3 //x = 2 WRONG
My question is: why Kotlin is not showing any error message on the last example? How is Kotlin interpreting the line "+3"?
val x = 2 is correct expression, so compiler uses it as complete expression.
+ 3 is correct expression although it doing nothing.
val x = 2 + is uncompleted expression - the compiler is trying to complete it using the next line.
This is an unfortunate result of the way Kotlin assumes a semicolon at the end of lines.
In languages like Java, every statement must end with a semicolon, so there's no ambiguity.
Kotlin allows you to omit semicolons, which can be handy. But it's a bit over-eager: it infers one at the end of every line that would make sense on its own, ignoring the following lines. This is rather annoying to those of us who like to put operators at the start of a line, not the end…
Most of the time, the following line won't make sense on its own, so you get a compiler error to warn you of the issue. Unfortunately, you've found one of the rare cases where the following line is valid, and so there's no error! (Kotlin has a unary plus to match its unary minus, so +3 is a number just like -4. And a number on its own is a valid expression. Kotlin calculates the value, and then discards it.)
The solutions are:
Put the whole expression on the one line. (Which is unwieldy if it's long!)
Put the operator at the end of the previous line. (Which is clearly what the language designers expect, but some of us find less logical and less clear.)
Prevent the first line from making sense on its own.
The best way I've found to do that last one is with parens:
val x = (2
+ 3)
It looks awkward in a very short expression, but it works reasonably well on longer ones — not ideal, but necessary unless/until Kotlin gets smarter about where to assume semicolons…
I've been breaking my head over this for a few days now and can't seem to be able to figure it out. Perhaps it's glaringly obvious, but I don't seem to be able to spot it. I've read up on all the basics of unicode, UTF-8, UTF-16, normalisation, etc, but to no avail. Hopefully somebody's able to help me out here...
I'm using Go's Value function from the testing/quick package to generate random values for the fields in my data structs, in order to implement the Generator interface for the structs in question. Specifically, given a Metadata struct, I've defined the implementation as follows:
func (m *Metadata) Generate(r *rand.Rand, size int) (value reflect.Value) {
value = reflect.ValueOf(m).Elem()
for i := 0; i < value.NumField(); i++ {
if t, ok := quick.Value(value.Field(i).Type(), r); ok {
value.Field(i).Set(t)
}
}
return
}
Now, in doing so, I'll end up with both the receiver and the return value being set with random generated values of the appropriate type (strings, ints, etc. in the receiver and reflect.Value in the returned reflect.Value).
Now, the implementation for the Value function states that it will return something of type []rune converted to type string. As far as I know, this should allow me to then use the functions in the runes, unicode and norm packages to define a filter which filters out everything which is not part of 'Latin', 'Letter' or 'Number'. I defined the following filter which uses a transform to filter out letters which are not in those character rangetables (as defined in the unicode package):
func runefilter(in reflect.Value) (out reflect.Value) {
out = in // Make sure you return something
if in.Kind() == reflect.String {
instr := in.String()
t := transform.Chain(norm.NFD, runes.Remove(runes.NotIn(rangetable.Merge(unicode.Letter, unicode.Latin, unicode.Number))), norm.NFC)
outstr, _, _ := transform.String(t, instr)
out = reflect.ValueOf(outstr)
}
return
}
Now, I think I've tried just about anything, but I keep ending up with a series of strings which are far from the Latin range, e.g.:
𥗉똿穊
𢷽嚶
秓䝏小𪖹䮋
𪿝ท솲
𡉪䂾
ʋ𥅮ᦸ
堮𡹯憨𥗼𧵕ꥆ
𢝌𐑮𧍛併怃𥊇
鯮
𣏲𝐒
⓿ꐠ槹𬠂黟
𢼭踁퓺𪇖
俇𣄃𔘧
𢝶
𝖸쩈𤫐𢬿詢𬄙
𫱘𨆟𑊙
欓
So, can anybody explain what I'm overlooking here and how I could instead define a transformer which removes/replaces non-letter/number/latin characters so that I can use the Value function as intended (but with a smaller subset of 'random' characters)?
Thanks!
Confusingly the Generate interface needs a function using the type not a the pointer to the type. You want your type signature to look like
func (m Metadata) Generate(r *rand.Rand, size int) (value reflect.Value)
You can play with this here. Note: the most important thing to do in that playground is to switch the type of the generate function from m Metadata to m *Metadata and see that Hi Mom! never prints.
In addition, I think you would be better served using your own type and writing a generate method for that type using a list of all of the characters you want to use. For example:
type LatinString string
const latin = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz01233456789"
and then use the generator
func (l LatinString) Generate(rand *rand.Rand, size int) reflect.Value {
var buffer bytes.Buffer
for i := 0; i < size; i++ {
buffer.WriteString(string(latin[rand.Intn(len(latin))]))
}
s := LatinString(buffer.String())
return reflect.ValueOf(s)
}
playground
Edit: also this library is pretty cool, thanks for showing it to me
The answer to my own question is, it seems, a combination of the answers provided in the comments by #nj_ and #jimb and the answer provided by #benjaminkadish.
In short, the answer boils down to:
"Not such a great idea as you thought it was", or "Bit of an ill-posed question"
"You were using the union of 'Letter', 'Latin' and 'Number' (Letter || Number || Latin), instead of the intersection of 'Latin' with the union of 'Letter' and 'Number' ((Letter || Number) && Latin))
Now for the longer version...
The idea behind me using the testing/quick package is that I wanted random data for (fuzzy) testing of my code. In the past, I've always written the code for doing things like that myself, again and again. This meant a lot of the same code across different projects. Now, I could of course written my own package for it, but it turns out that, even better than that, there's actually a standard package which does just about exactly what I want.
Now, it turns out the package does exactly what I want very well. The codepoints in the strings which it generates are actually random and not just restricted to what we're accustomed to using in everyday life. Now, this is of course exactly the thing which you want in doing fuzzy testing in order to test the code with values outside the usual assumptions.
In practice, that means I'm running into two problems:
There's some limits on what I would consider reasonable input for a string. Meaning that, in testing the processing of a Name field or a URL field, I can reasonably assume there's not going to be a value like 'James Mc⌢' (let alone 'James Mc🙁') or 'www.🕸site.com', but just 'James McFrown' and 'www.website.com'. Hence, I can't expect a reasonable system to be able to support it. Of course, things shouldn't completely break down, but it also can't be expected to handle the former examples without any problems.
When I filter the generated string on values which one might consider reasonable, the chance of ending up with a valid string is very small. The set of possible characters in the set used by the testing/quick is just so large (0x10FFFF) and the set of reasonable characters so small, you end up with empty strings most of the time.
So, what do we need to take away from this?
So, whilst I hoped to use the standard testing/quick package to replace my often repeated code to generate random data for fuzzy testing, it does this so well that it provides data outside the range of what I would consider reasonable for the code to be able to handle. It seems that the choice, in the end, is to:
Either be able to actually handle all fuzzy options, meaning that if somebody's name is 'Arnold 💰💰' ('Arnold Moneybags'), it shouldn't go arse over end. Or...
Use custom/derived types with their own Generator. This means you're going to have to use the derived type instead of the basic type throughout the code. (Comparable to defining a string as wchar_t instead of char in C++ and working with those by default.). Or...
Don't use testing/quick for fuzzy testing, because as soon as you run into a generated string value, you can (and should) get a very random string.
As always, further comments are of course welcome, as it's quite possible I overlooked something.