To make value interpolation on cylindrical surface - matplotlib

I have a issue to interpolate my values "c" on cylindrical surface.
The problem is that possibly I dont understand how to indicate surface for gridding with gridddata function..
>import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import griddata as gd
#Creating data in polar coordinates
phi,d = np.linspace(0, 2* np.pi, 20), np.linspace(0,20,20)
PHI,D = np.meshgrid(phi,d)
R = 2
#Transforming in X Y Z coordinates
X = R * np.cos(PHI)
Y = R * np.sin(PHI)
Z = R * D
T=np.linspace(0,10,400)
c=np.sin(T)*np.cos(T/2) #Value c I would like to interpolate
fig1 = plt.figure()
ax = fig1.add_subplot(1,1,1, projection='3d')
xi=np.array(np.meshgrid(X,Y,Z))
img = ax.scatter(X, Y, Z,c=c, cmap=plt.hot()) #To plot data scatter before interpolation
fig1.colorbar(img)
plt.show()
X1,Y1,Z1 =np.meshgrid(X ,Y ,Z) #To define sufrace for interpolation
int = gd((X,Y,Z), c, (X1,Y1,Z1), method='linear')
fig2 = plt.figure() #trying to plot the answer
ax1 = fig2.add_subplot(1,1,1, projection='3d')
ax1.scatter(int)
img = ax1.scatter(X, Y, Z, c=c, cmap=plt.hot())
`
Its gives error: different number of values and points
I dont know how to indicate (X1,Y1,Z1) surface in griddata function
Thanks a lot for any tips ...

Related

Surface Plot of a function B(x,y,z)

I have to plot a surface plot which has axes x,y,z and a colormap set by a function of x,y,z [B(x,y,z)].
I have the coordinate arrays:
x=np.arange(-100,100,1)
y=np.arange(-100,100,1)
z=np.arange(-100,100,1)
Moreover, my to-be-colormap function B(x,y,z) is a 3D array, whose B(x,y,z)[i] elements are the (x,y) coordinates at z.
I have tried something like:
Z,X,Y=np.meshgrid(z,x,y) # Z is the first one since B(x,y,z)[i] are the (x,y) coordinates at z.
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
img = ax.scatter(Z, X, Y, c=B(x,y,z), cmap=plt.hot())
fig.colorbar(img)
plt.show()
However, it unsurprisingly plots dots, which is not what I want. Rather, I need a surface plot.
The figure I have obtained:
The kind of figure I want:
where the colors are determined by B(x,y,z) for my case.
You have to:
use plot_surface to create a surface plot.
your function B(x, y, z) will be used to compute the color parameter, a number assigned to each face of the surface.
the color parameter must be normalized between 0, 1. We use matplotlib's Normalize to achieve that.
then, you create the colors by applying the colormap to the normalized color parameter.
finally, you create the plot.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from matplotlib.colors import Normalize
t = np.linspace(0, 2*np.pi)
p = np.linspace(0, 2*np.pi)
t, p = np.meshgrid(t, p)
r1, r2 = 1, 3
x = (r2 + r1 * np.cos(t)) * np.cos(p)
y = (r2 + r1 * np.cos(t)) * np.sin(p)
z = r1 * np.sin(t)
color_param = np.sin(x / 2) * np.cos(y) + z
cmap = cm.jet
norm = Normalize(vmin=color_param.min(), vmax=color_param.max())
norm_color_param = norm(color_param)
colors = cmap(norm_color_param)
fig = plt.figure()
ax = fig.add_subplot(projection="3d")
ax.plot_surface(x, y, z, facecolors=colors)
ax.set_zlim(-4, 4)
plt.show()

ValueError: Contour levels must be increasing - how to plot 3 feature data

import numpy as np
from matplotlib import pyplot as plt
data = np.random.normal(0,1,[100,3])
x = data[:,0]
y = data[:,1]
z = data[:,2]
plt.contour([x,y],z)
When I run this code with dummy data I get:
ValueError: Contour levels must be increasing
Do you have any idea what would this mean and how I could fix it?
plt.contour is a bit particular about its input, the z values must be on values on a rectangular 2D grid, see for example:
import matplotlib.pyplot as plt
import numpy as np
x = np.expand_dims(np.arange(1,11,1), axis=1)
y = np.expand_dims(np.arange(2,21,2), axis=0)
z = y * x
print(x.shape)
print(y.shape)
print(z.shape)
plt.figure()
plt.contour(z)
plt.show()
You can also provide x and y values for plt.contour by using np.meshgrid :
XX,YY = np.meshgrid(x,y)
plt.figure()
plt.contour(XX, YY, z)
plt.show()
If you have z-values with irregular values for x and y, you might use plt.tricontour, see the following example:
from matplotlib.tri import Triangulation
data = np.random.normal(0,1,[100,3])
x = data[:,0]
y = data[:,1]
#z = data[:,2]
z = x * y
tri = Triangulation(x,y)
plt.figure()
plt.tricontour(tri, z, )
plt.scatter(x,y, c=z)
plt.show()
Edit: from JohanC's comment i learned that this can be simplified without importing matplotlib.tri by:
plt.figure()
plt.tricontour(x,y,z)
plt.scatter(x,y, c=z)
plt.show()

Matplotlib 3d barplot failing to draw just one face

import numpy as np
import matplotlib.pyplot as plt
x, y = np.array([[x, y] for x in range(5) for y in range(x+1)]).T
z = 1/ (5*x + 5)
fig = plt.figure()
ax = fig.gca(projection = '3d')
ax.bar3d(x, y, np.zeros_like(z), dx = 1, dy = 1, dz = z)
yields
How do I get the face at (1,0) to display properly?
There is currently no good solution to this. Fortunately though, it happens only for some viewing angles. So you can choose an angle where it plots fine, e.g.
ax.view_init(azim=-60, elev=25)

how to plot gradient fill on the 3d bars in matplotlib

Right now there're some statistics plotted in 3d bar over (x, y). each bar height represents the density of the points in side the square grid of (x,y) plane. Right now, i can put different color on each bar. However, I want to put progressive color on the 3d bar, similar as the cmap, so the bar will be gradient filled depending on the density.
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# height of the bars
z = np.ones((4, 4)) * np.arange(4)
# position of the bars
xpos, ypos = np.meshgrid(np.arange(4), np.arange(4))
xpos = xpos.flatten('F')
ypos = ypos.flatten('F')
zpos = np.zeros_like(xpos)
dx = 0.5 * np.ones_like(zpos)
dy = dx.copy()
dz = z.flatten()
ax.bar3d(xpos, ypos, zpos, dx, dy, dz, color='b', zsort='average')
plt.show()
Output the above code:
Let me first say that matplotlib may not be the tool of choice when it comes to sophisticated 3D plots.
That said, there is no built-in method to produce bar plots with differing colors over the extend of the bar.
We therefore need to mimic the bar somehow. A possible solution can be found below. Here, we use a plot_surface plot to create a bar that contains a gradient.
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import matplotlib.colors
import numpy as np
fig = plt.figure()
ax = fig.add_subplot(111, projection= Axes3D.name)
def make_bar(ax, x0=0, y0=0, width = 0.5, height=1 , cmap="viridis",
norm=matplotlib.colors.Normalize(vmin=0, vmax=1), **kwargs ):
# Make data
u = np.linspace(0, 2*np.pi, 4+1)+np.pi/4.
v_ = np.linspace(np.pi/4., 3./4*np.pi, 100)
v = np.linspace(0, np.pi, len(v_)+2 )
v[0] = 0 ; v[-1] = np.pi; v[1:-1] = v_
x = np.outer(np.cos(u), np.sin(v))
y = np.outer(np.sin(u), np.sin(v))
z = np.outer(np.ones(np.size(u)), np.cos(v))
xthr = np.sin(np.pi/4.)**2 ; zthr = np.sin(np.pi/4.)
x[x > xthr] = xthr; x[x < -xthr] = -xthr
y[y > xthr] = xthr; y[y < -xthr] = -xthr
z[z > zthr] = zthr ; z[z < -zthr] = -zthr
x *= 1./xthr*width; y *= 1./xthr*width
z += zthr
z *= height/(2.*zthr)
#translate
x += x0; y += y0
#plot
ax.plot_surface(x, y, z, cmap=cmap, norm=norm, **kwargs)
def make_bars(ax, x, y, height, width=1):
widths = np.array(width)*np.ones_like(x)
x = np.array(x).flatten()
y = np.array(y).flatten()
h = np.array(height).flatten()
w = np.array(widths).flatten()
norm = matplotlib.colors.Normalize(vmin=0, vmax=h.max())
for i in range(len(x.flatten())):
make_bar(ax, x0=x[i], y0=y[i], width = w[i] , height=h[i], norm=norm)
X, Y = np.meshgrid([1,2,3], [2,3,4])
Z = np.sin(X*Y)+1.5
make_bars(ax, X,Y,Z, width=0.2, )
plt.show()

group boxplot histogramming

I would like to group my data and to plot the boxplot for all the groups. There are many questions and answer about that, my problem is that I want to group by a continuos variable, so I want to histogramming my data.
Here what I have done. My data:
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
x = np.random.chisquare(5, size=100000)
y = np.random.normal(size=100000) / (0.05 * x + 0.1) + 2 * x
f, ax = plt.subplots()
ax.plot(x, y, '.', alpha=0.05)
plt.show()
I want to study the behaviour of y (location, width, ...) as a function of x. I am not interested in the distribution of x so I will normalized it.
f, ax = plt.subplots()
xbins = np.linspace(0, 25, 50)
ybins = np.linspace(-20, 50, 50)
H, xedges, yedges = np.histogram2d(y, x, bins=(ybins, xbins))
norm = np.sum(H, axis = 0)
H /= norm
ax.pcolor(xbins, ybins, np.nan_to_num(H), vmax=.4)
plt.show()
I can plot histogram, but I want boxplot
binning = np.concatenate(([0], np.sort(np.random.random(20) * 25), [25]))
idx = np.digitize(x, binning)
data_to_plot = [y[idx == i] for i in xrange(len(binning))]
f, ax = plt.subplots()
midpoints = 0.5 * (binning[1:] + binning[:-1])
widths = 0.9 * (binning[1:] - binning[:-1])
from matplotlib.ticker import MultipleLocator, FormatStrFormatter
majorLocator = MultipleLocator(2)
ax.boxplot(data_to_plot, positions = midpoints, widths=widths)
ax.set_xlim(0, 25)
ax.xaxis.set_major_locator(majorLocator)
ax.set_xlabel('x')
ax.set_ylabel('median(y)')
plt.show()
Is there an automatic way to do that, like ax.magic(x, y, binning)? Is there a better way to do that? (Have a look to https://root.cern.ch/root/html/TProfile.html for example, which plot the mean and the error of the mean as error bars)
In addition, I want to minize the memory footprint (my real data are much more than 100000), I am worried about data_to_plot, is it a copy?