Right now there're some statistics plotted in 3d bar over (x, y). each bar height represents the density of the points in side the square grid of (x,y) plane. Right now, i can put different color on each bar. However, I want to put progressive color on the 3d bar, similar as the cmap, so the bar will be gradient filled depending on the density.
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# height of the bars
z = np.ones((4, 4)) * np.arange(4)
# position of the bars
xpos, ypos = np.meshgrid(np.arange(4), np.arange(4))
xpos = xpos.flatten('F')
ypos = ypos.flatten('F')
zpos = np.zeros_like(xpos)
dx = 0.5 * np.ones_like(zpos)
dy = dx.copy()
dz = z.flatten()
ax.bar3d(xpos, ypos, zpos, dx, dy, dz, color='b', zsort='average')
plt.show()
Output the above code:
Let me first say that matplotlib may not be the tool of choice when it comes to sophisticated 3D plots.
That said, there is no built-in method to produce bar plots with differing colors over the extend of the bar.
We therefore need to mimic the bar somehow. A possible solution can be found below. Here, we use a plot_surface plot to create a bar that contains a gradient.
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import matplotlib.colors
import numpy as np
fig = plt.figure()
ax = fig.add_subplot(111, projection= Axes3D.name)
def make_bar(ax, x0=0, y0=0, width = 0.5, height=1 , cmap="viridis",
norm=matplotlib.colors.Normalize(vmin=0, vmax=1), **kwargs ):
# Make data
u = np.linspace(0, 2*np.pi, 4+1)+np.pi/4.
v_ = np.linspace(np.pi/4., 3./4*np.pi, 100)
v = np.linspace(0, np.pi, len(v_)+2 )
v[0] = 0 ; v[-1] = np.pi; v[1:-1] = v_
x = np.outer(np.cos(u), np.sin(v))
y = np.outer(np.sin(u), np.sin(v))
z = np.outer(np.ones(np.size(u)), np.cos(v))
xthr = np.sin(np.pi/4.)**2 ; zthr = np.sin(np.pi/4.)
x[x > xthr] = xthr; x[x < -xthr] = -xthr
y[y > xthr] = xthr; y[y < -xthr] = -xthr
z[z > zthr] = zthr ; z[z < -zthr] = -zthr
x *= 1./xthr*width; y *= 1./xthr*width
z += zthr
z *= height/(2.*zthr)
#translate
x += x0; y += y0
#plot
ax.plot_surface(x, y, z, cmap=cmap, norm=norm, **kwargs)
def make_bars(ax, x, y, height, width=1):
widths = np.array(width)*np.ones_like(x)
x = np.array(x).flatten()
y = np.array(y).flatten()
h = np.array(height).flatten()
w = np.array(widths).flatten()
norm = matplotlib.colors.Normalize(vmin=0, vmax=h.max())
for i in range(len(x.flatten())):
make_bar(ax, x0=x[i], y0=y[i], width = w[i] , height=h[i], norm=norm)
X, Y = np.meshgrid([1,2,3], [2,3,4])
Z = np.sin(X*Y)+1.5
make_bars(ax, X,Y,Z, width=0.2, )
plt.show()
Related
I got some sort of a problem with a pendulum animation, I tried to display my animation (the pendulum's movement) next to a graph in two separate axes, but when I try my code, it barely works displaying two axes that overlap on one another... Here is what I tried:
PS: best would be that the circles I was intended to add at the end of my pendulum appear on the final animation, but I really have no idea how to put them only on a particular ax
from numpy import sin, cos, pi, array
import numpy as np
import scipy.integrate
import matplotlib.pyplot as plt
import matplotlib.animation as animation
g = 10
y0 = np.array([np.pi / 2.0, 0]) # angle, vitesse
j = 0.2
def f(y, t):
return np.array([y[1], -g * np.sin(y[0])-j*y[1]])
t = np.linspace(0, 100, 10000)
y = scipy.integrate.odeint(f, y0, t)
theta, thetadot = y[:, 0], y[:, 1]
fig, axs = plt.subplots(1,2)
axs[0] = fig.add_subplot(xlim=(-1.5, 1.5), ylim=(-1.5, 1.5))
axs[0].grid()
axs[0].set_box_aspect(1)
# anchor = plt.Circle((0, 0), 0.01, color='black')
# mass = plt.Circle((sin(y0[0]),-cos(y0[0])), 0.2, color='black')
pendulums = axs[0].plot((0, sin(y0[0])), (0, -cos(y0[0])), 'o-', color = 'black')
# plt.gca().add_patch(weight) # adding circles
# plt.gca().add_patch(attach)
phase = axs[1].plot(theta,thetadot)
def animate(i):
angle = theta[i]
x = (0, sin(angle))
y = (0, -cos(angle))
#mass.center = (x[1],y[1])
pendulums[0].set_data(x, y)
anim = animation.FuncAnimation(fig, animate, interval=10)
plt.show()
In order to create a 3d plot using plot_surface and wireframe I wrote this (looking here around)
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import rc
from matplotlib.ticker import MultipleLocator
import matplotlib.ticker as mticker
import numpy as np
from matplotlib.ticker import FormatStrFormatter
def log_tick_formatter(val, pos=None):
return f"10$^{{{int(val)}}}$"
data=np.genfromtxt('jpdfomegal2_90.dat')
x_len= len(np.unique(data[:, 0]))
y_len= len(np.unique(data[:, 1]))
X = data[:, 0].reshape(x_len, y_len)
Y = data[:, 1].reshape(x_len, y_len)
Z = data[:, 2].reshape(x_len, y_len)
#identify lowest non-negative Z value Zmin>0
Zmin = np.where(Z > 0, Z, np.inf).min()
Zmax = Z.max()
#and substitute zero with a slightly lower value than Zmin
Z[Z==0] = 0.9 * Zmin
#log transformation because the conversion in 3D
#does not work well in matplotlib
Zlog = np.log10(Z)
rc('font',family='palatino')
rc('font',size=18)
fig = plt.figure(figsize=(12,8))
#ax = fig.add_subplot(projection='3d')
ax = Axes3D(fig)
ax.set_xlim3d(0,15)
ax.set_zlim3d(np.floor(np.log10(Zmin))-1, np.ceil(np.log10(10)))
ax.zaxis.set_major_formatter(mticker.FuncFormatter(log_tick_formatter))
ax.zaxis.set_major_locator(mticker.MaxNLocator(integer=True))
rc('font',family='palatino')
rc('font',size=18)
tmp_planes = ax.zaxis._PLANES
ax.zaxis._PLANES = ( tmp_planes[2], tmp_planes[3],
tmp_planes[0], tmp_planes[1],
tmp_planes[4], tmp_planes[5])
ax.set_xlabel('$\omega^2 /<\omega^2>$')
ax.xaxis.labelpad = 10
ax.yaxis.labelpad = 10
ax.set_ylabel('cos$(\omega,\lambda^2)$')
ax.zaxis.set_rotate_label(False) # disable automatic rotation
ax.zaxis.labelpad = 10
ax.set_zlabel('')
ax.view_init(elev=17, azim=-60)
ax.grid(False)
ax.xaxis.pane.set_edgecolor('black')
ax.yaxis.pane.set_edgecolor('black')
ax.zaxis.pane.set_edgecolor('black')
ax.xaxis.pane.fill = False
ax.yaxis.pane.fill = False
ax.zaxis.pane.fill = False
ax.xaxis.set_major_locator(MultipleLocator(2))
ax.yaxis.set_major_locator(MultipleLocator(0.2))
ax.zaxis.set_major_locator(MultipleLocator(1))
#not sure this axis scaling routine is really necessary
scale_x = 1
scale_y = 1
scale_z = 0.8
ax.get_proj = lambda: np.dot(Axes3D.get_proj(ax), np.diag([scale_x, scale_y, scale_z, 1]))
ax.contour(X, Y, np.log10(Z), 4, lw=0.1, colors="k", linestyles="--", offset=np.floor(np.log10(Zmin))-1)#-7)
surf = ax.plot_surface(X, Y, np.log10(Z), cmap="binary", lw=0.1,alpha=0.5)
ax.plot_wireframe(X, Y, np.log10(Z),linewidth=1,color='k')
ax.contour(X, Y, np.log10(Z), 4, lw=0.1, colors="k", linestyles="solid")
fig.colorbar(surf, shrink=0.5, aspect=20)
plt.tight_layout()
plt.savefig('jpdf_lambda2_90.png', bbox_inches='tight')
plt.show()
the problem is related to the "minorticks" along zaxis .. I obtain this :
but I would have this format and ticks in the axis
Does somebody clarify how to obtain it and as well I did not find a way to use the log scale in pyplot 3d
There's an open bug on log-scaling in 3D plots, and it looks like there won't be a fix any time soon.
You can use a matplotlib.ticker.FixedLocator to add the z-axis minor ticks, as shown below.
I didn't have your data, so I've plotted an arbitrary surface.
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import rc
from matplotlib.ticker import MultipleLocator, FixedLocator
import matplotlib.ticker as mticker
import numpy as np
from matplotlib.ticker import FormatStrFormatter
def log_tick_formatter(val, pos=None):
return f"10$^{{{int(val)}}}$"
x = np.linspace(1,15,15)
y = np.linspace(0,1,15)
X, Y = np.meshgrid(x, y)
Z = 1 + X**2 * Y**2
#identify lowest non-negative Z value Zmin>0
Zmin = np.where(Z > 0, Z, np.inf).min()
Zmax = Z.max()
#and substitute zero with a slightly lower value than Zmin
Z[Z==0] = 0.9 * Zmin
rc('font',family='palatino')
rc('font',size=18)
fig = plt.figure(figsize=(12,8))
ax = Axes3D(fig, auto_add_to_figure=False)
fig.add_axes(ax)
ax.set_xlim3d(0,15)
ax.set_zlim3d(np.floor(np.log10(Zmin))-1, np.ceil(np.log10(Zmax)))
ax.zaxis.set_major_formatter(mticker.FuncFormatter(log_tick_formatter))
tmp_planes = ax.zaxis._PLANES
ax.zaxis._PLANES = ( tmp_planes[2], tmp_planes[3],
tmp_planes[0], tmp_planes[1],
tmp_planes[4], tmp_planes[5])
ax.set_xlabel('$\omega^2 /<\omega^2>$')
ax.xaxis.labelpad = 10
ax.yaxis.labelpad = 10
ax.set_ylabel('cos$(\omega,\lambda^2)$')
ax.zaxis.set_rotate_label(False) # disable automatic rotation
ax.zaxis.labelpad = 10
ax.set_zlabel('')
ax.view_init(elev=17, azim=-60)
ax.grid(False)
ax.xaxis.pane.set_edgecolor('black')
ax.yaxis.pane.set_edgecolor('black')
ax.zaxis.pane.set_edgecolor('black')
ax.xaxis.pane.fill = False
ax.yaxis.pane.fill = False
ax.zaxis.pane.fill = False
ax.xaxis.set_major_locator(MultipleLocator(2))
ax.yaxis.set_major_locator(MultipleLocator(0.2))
ax.zaxis.set_major_locator(MultipleLocator(1))
# Z minor ticks
zminorticks = []
zaxmin, zaxmax = ax.get_zlim()
for zorder in np.arange(np.floor(zaxmin),
np.ceil(zaxmax)):
zminorticks.extend(np.log10(np.linspace(2,9,8)) + zorder)
ax.zaxis.set_minor_locator(FixedLocator(zminorticks))
#not sure this axis scaling routine is really necessary
scale_x = 1
scale_y = 1
scale_z = 0.8
ax.get_proj = lambda: np.dot(Axes3D.get_proj(ax), np.diag([scale_x, scale_y, scale_z, 1]))
ax.contour(X, Y, np.log10(Z), 4, colors="k", linestyles="--", offset=np.floor(np.log10(Zmin))-1)#-7)
surf = ax.plot_surface(X, Y, np.log10(Z), cmap="binary", lw=0.1,alpha=0.5)
ax.plot_wireframe(X, Y, np.log10(Z),linewidth=1,color='k')
ax.contour(X, Y, np.log10(Z), 4, colors="k", linestyles="solid")
fig.colorbar(surf, shrink=0.5, aspect=20)
# get a warning that Axes3D is incompatible with tight_layout()
# plt.tight_layout()
# for saving
# fig.savefig('log3d.png')
plt.show()
I have a issue to interpolate my values "c" on cylindrical surface.
The problem is that possibly I dont understand how to indicate surface for gridding with gridddata function..
>import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import griddata as gd
#Creating data in polar coordinates
phi,d = np.linspace(0, 2* np.pi, 20), np.linspace(0,20,20)
PHI,D = np.meshgrid(phi,d)
R = 2
#Transforming in X Y Z coordinates
X = R * np.cos(PHI)
Y = R * np.sin(PHI)
Z = R * D
T=np.linspace(0,10,400)
c=np.sin(T)*np.cos(T/2) #Value c I would like to interpolate
fig1 = plt.figure()
ax = fig1.add_subplot(1,1,1, projection='3d')
xi=np.array(np.meshgrid(X,Y,Z))
img = ax.scatter(X, Y, Z,c=c, cmap=plt.hot()) #To plot data scatter before interpolation
fig1.colorbar(img)
plt.show()
X1,Y1,Z1 =np.meshgrid(X ,Y ,Z) #To define sufrace for interpolation
int = gd((X,Y,Z), c, (X1,Y1,Z1), method='linear')
fig2 = plt.figure() #trying to plot the answer
ax1 = fig2.add_subplot(1,1,1, projection='3d')
ax1.scatter(int)
img = ax1.scatter(X, Y, Z, c=c, cmap=plt.hot())
`
Its gives error: different number of values and points
I dont know how to indicate (X1,Y1,Z1) surface in griddata function
Thanks a lot for any tips ...
I'm drawing several contour lines over a basemap projection as shown in the following figure:.
There are 3 contours that are not drawn completely (in Oregon, Washington and California) and seems like there is this line that has cut all 3 of them in the same latitude. I'm not sure how to solve this problem.
I added the number of interpolation points, didn't help. changed the ll and ur points to include more area didn't help.
The code is below (not reproducible but might help):
def visualise_bigaus(mus, sigmas, corxys , output_type='pdf', **kwargs):
lllat = 24.396308
lllon = -124.848974
urlat = 49.384358
urlon = -66.885444
fig = plt.figure(figsize=(4, 2.5))
ax = fig.add_subplot(111, axisbg='w', frame_on=False)
m = Basemap(llcrnrlat=lllat,
urcrnrlat=urlat,
llcrnrlon=lllon,
urcrnrlon=urlon,
resolution='i', projection='cyl')
m.drawmapboundary(fill_color = 'white')
#m.drawcoastlines(linewidth=0.2)
m.drawcountries(linewidth=0.2)
m.drawstates(linewidth=0.2, color='lightgray')
#m.fillcontinents(color='white', lake_color='#0000ff', zorder=2)
#m.drawrivers(color='#0000ff')
m.drawlsmask(land_color='gray',ocean_color="#b0c4de", lakes=True)
lllon, lllat = m(lllon, lllat)
urlon, urlat = m(urlon, urlat)
mlon, mlat = m(*(mus[:,1], mus[:,0]))
numcols, numrows = 1000, 1000
X = np.linspace(mlon.min(), urlon, numcols)
Y = np.linspace(lllat, urlat, numrows)
X, Y = np.meshgrid(X, Y)
m.scatter(mlon, mlat, s=0.2, c='red')
shp_info = m.readshapefile('./data/us_states_st99/st99_d00','states',drawbounds=True, zorder=0)
printed_names = []
ax = plt.gca()
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
for spine in ax.spines.itervalues():
spine.set_visible(False)
for k in xrange(mus.shape[0]):
#here x is longitude and y is latitude
#apply softplus to sigmas (to make them positive)
sigmax=np.log(1 + np.exp(sigmas[k][1]))
sigmay=np.log(1 + np.exp(sigmas[k][0]))
mux=mlon[k]
muy=mlat[k]
corxy = corxys[k]
#apply the soft sign
corxy = corxy / (1 + np.abs(corxy))
#now given corxy find sigmaxy
sigmaxy = corxy * sigmax * sigmay
#corxy = 1.0 / (1 + np.abs(sigmaxy))
Z = mlab.bivariate_normal(X, Y, sigmax=sigmax, sigmay=sigmay, mux=mux, muy=muy, sigmaxy=sigmaxy)
#Z = maskoceans(X, Y, Z)
con = m.contour(X, Y, Z, levels=[0.02], linewidths=0.5, colors='darkorange', antialiased=True)
'''
num_levels = len(con.collections)
if num_levels > 1:
for i in range(0, num_levels):
if i != (num_levels-1):
con.collections[i].set_visible(False)
'''
contour_labels = False
if contour_labels:
plt.clabel(con, [con.levels[-1]], inline=True, fontsize=10)
'''
world_shp_info = m.readshapefile('./data/CNTR_2014_10M_SH/Data/CNTR_RG_10M_2014','world',drawbounds=False, zorder=100)
for shapedict,state in zip(m.world_info, m.world):
if shapedict['CNTR_ID'] not in ['CA', 'MX']: continue
poly = MplPolygon(state,facecolor='gray',edgecolor='gray')
ax.add_patch(poly)
'''
if iter:
iter = str(iter).zfill(3)
else:
iter = ''
plt.tight_layout()
plt.savefig('./maps/video/gaus_' + iter + '.' + output_type, frameon=False, dpi=200)
The problem is the meshgrid not covering the complete map. The meshgrid simply doesn't have any points at the positions where you want to draw the gaussian contour line.
An example to reproduce this behaviour is the following, where the meshgrid in x directio starts at -1, such that points lower than that are not drawn.
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import numpy as np
fig, ax=plt.subplots()
ax.plot([-2,2],[-2,-2], alpha=0)
X,Y = np.meshgrid(np.linspace(-1,2),np.linspace(-2,2))
Z = mlab.bivariate_normal(X, Y, sigmax=1., sigmay=1., mux=0.1, muy=0.1, sigmaxy=0)
con = ax.contour(X, Y, Z, levels=[Z.max()/3, Z.max()/2., Z.max()*0.8],colors='darkorange')
plt.show()
A similar problem occurs in the code from the question.
While in Y direction, you use the complete map, Y = np.linspace(lllat, urlat, numrows), in X direction you restrict the mesh to start at mlon.min(),
X = np.linspace(mlon.min(), urlon, numcols)
The solution would of course be not to start the mesh in Portland, but somewhere in the ocean, i.e. at the edge of the shown map.
I would like to group my data and to plot the boxplot for all the groups. There are many questions and answer about that, my problem is that I want to group by a continuos variable, so I want to histogramming my data.
Here what I have done. My data:
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
x = np.random.chisquare(5, size=100000)
y = np.random.normal(size=100000) / (0.05 * x + 0.1) + 2 * x
f, ax = plt.subplots()
ax.plot(x, y, '.', alpha=0.05)
plt.show()
I want to study the behaviour of y (location, width, ...) as a function of x. I am not interested in the distribution of x so I will normalized it.
f, ax = plt.subplots()
xbins = np.linspace(0, 25, 50)
ybins = np.linspace(-20, 50, 50)
H, xedges, yedges = np.histogram2d(y, x, bins=(ybins, xbins))
norm = np.sum(H, axis = 0)
H /= norm
ax.pcolor(xbins, ybins, np.nan_to_num(H), vmax=.4)
plt.show()
I can plot histogram, but I want boxplot
binning = np.concatenate(([0], np.sort(np.random.random(20) * 25), [25]))
idx = np.digitize(x, binning)
data_to_plot = [y[idx == i] for i in xrange(len(binning))]
f, ax = plt.subplots()
midpoints = 0.5 * (binning[1:] + binning[:-1])
widths = 0.9 * (binning[1:] - binning[:-1])
from matplotlib.ticker import MultipleLocator, FormatStrFormatter
majorLocator = MultipleLocator(2)
ax.boxplot(data_to_plot, positions = midpoints, widths=widths)
ax.set_xlim(0, 25)
ax.xaxis.set_major_locator(majorLocator)
ax.set_xlabel('x')
ax.set_ylabel('median(y)')
plt.show()
Is there an automatic way to do that, like ax.magic(x, y, binning)? Is there a better way to do that? (Have a look to https://root.cern.ch/root/html/TProfile.html for example, which plot the mean and the error of the mean as error bars)
In addition, I want to minize the memory footprint (my real data are much more than 100000), I am worried about data_to_plot, is it a copy?