How to interpret "Value Loss" chart in TensorBoard? - tensorflow

I have a target-finding, obstacle-avoiding helicopter in Unity Machine Learning Agents. Looking at the TensorBoard for my training, I'm trying to get a feel for how to interpret the "Losses/Value Loss".
I've googled many articles on ML Loss, like this one, but I can't seem to get an intuitive understanding yet of what it all means for my little helicopter and possible changes I should implement, if any. (The helicopter is rewarded by getting closer and again for reaching the target, and punished by getting further or colliding. It measures a variety of things like relative speed, relative target position, ray sensors and so on, and it does basically work in target-finding, whereas more complicated maze type obstacles have not been tested or trained on yet. It's using 3 layers.) Thanks!

In reinforcement learning and specifically regarding actor/critic algorithms, value loss is the difference (or an average of many such differences) between the learning algorithm's expectation of a state's value and the empirically observed value of that state.
What is a state's value? A state's value is, in short, how much reward you can expect given that you start in that state. Immediate reward contributes completely to this amount. Reward that can possibly occur but not immediately contribute less, with more distant occurrences contributing less and less. We call this reduction in contribution to value a "discount", or we say that these rewards are "discounted".
Expected value is how much the critic part of the algorithm predicts the value to be. In the case of a critic implemented as a neural network, it's the output of the neural network with the state as its input.
Empirically observed value is the amount you get when you add up the rewards that you actually got when you left that state, plus any rewards (discounted by some amount) you got immediately after that for some number of steps (we'll say after these steps you ended up on state X), and (perhaps, depending on implementation) plus some discounted amount based on the value of state X.
In short, the smaller it is, the better it got at predicting how well it is going to perform. This doesn't mean that it gets better at playing - after all, one can be terrible at a game yet be accurate at predicting that they will lose and when they will lose if they learn to choose actions that will make them lose quickly!

Related

How to do real time machine learning and deep learning?

Machine learning and deep learning model I know how to code but not know how to do it in real time like stock market and get real time predicted value.
This is a simple toy example. Let us assume that for stock market prediction, you use a fixed time window, e.g the past 10 candlesticks. You query the data, pass it to the model and make your prediction (for example predicting the next 5 candle sticks). When the 11th candle stick appears in real time, query again the previous 10 candle sticks [2nd-11th] and make predictions for the next 5. You can adjust overlapping predictions by averaging them for instance.
This scheme would work for machine learning and deep learning. Of course that is just a toy example, hence there are more sophisticated of doing so. So get creative and read a bunch of research papers to see how it is done in the industry.

what is a "convolution warmup"?

i encountered this phrase few times before, mostly in the context of neural networks and tensorflow, but i get the impression its something more general and not restricted to these environments.
here for example, they say that this "convolution warmup" process takes about 10k iterations.
why do convolutions need to warmup? what prevents them from reaching their top speed right away?
one thing that i can think of is memory allocation. if so, i would expect that it would be solved after 1 (or at least <10) iteration. why 10k?
edit for clarification: i understand that the warmup is a time period or number of iterations that have to be done until the convolution operator reaches its top speed (time per operator).
what i ask is - why is it needed and what happens during this time that makes the convolution faster?
Training neural networks works by offering training data, calculating the output error, and backpropagating the error back to the individual connections. For symmetry breaking, the training doesn't start with all zeros, but by random connection strengths.
It turns out that with the random initialization, the first training iterations aren't really effective. The network isn't anywhere near to the desired behavior, so the errors calculated are large. Backpropagating these large errors would lead to overshoot.
A warmup phase is intended to get the initial network away from a random network, and towards a first approximation of the desired network. Once the approximation has been achieved, the learning rate can be accelerated.
This is an empirical result. The number of iterations will depend on the complexity of your program domain, and therefore also with the complexity of the necessary network. Convolutional neural networks are fairly complex, so warmup is more important for them.
You are not alone to claiming the timer per iteration varies.
I run the same example and I get the same question.And I can say the main reason is the differnet input image shape and obeject number to detect.
I offer my test result to discuss it.
I enable trace and get the timeline at the first,then I found that Conv2D occurrences vary between steps in gpu stream all compulte,Then I use export TF_CUDNN_USE_AUTOTUNE=0 to disable autotune.
then there are same number of Conv2D in the timeline,and the time are about 0.4s .
the time cost are still different ,but much closer!

Correcting SLAM drift error using GPS measurements

I'm trying to figure out how to correct drift errors introduced by a SLAM method using GPS measurements, I have two point sets in euclidian 3d space taken at fixed moments in time:
The red dataset is introduced by GPS and contains no drift errors, while blue dataset is based on SLAM algorithm, it drifts over time.
The idea is that SLAM is accurate on short distances but eventually drifts, while GPS is accurate on long distances and inaccurate on short ones. So I would like to figure out how to fuse SLAM data with GPS in such way that will take best accuracy of both measurements. At least how to approach this problem?
Since your GPS looks like it is very locally biased, I'm assuming it is low-cost and doesn't use any correction techniques, e.g. that it is not differential. As you probably are aware, GPS errors are not Gaussian. The guys in this paper show that a good way to model GPS noise is as v+eps where v is a locally constant "bias" vector (it is usually constant for a few metters, and then changes more or less smoothly or abruptly) and eps is Gaussian noise.
Given this information, one option would be to use Kalman-based fusion, e.g. you add the GPS noise and bias to the state vector, and define your transition equations appropriately and proceed as you would with an ordinary EKF. Note that if we ignore the prediction step of the Kalman, this is roughly equivalent to minimizing an error function of the form
measurement_constraints + some_weight * GPS_constraints
and that gives you a more straigh-forward, second option. For example, if your SLAM is visual, you can just use the sum of squared reprojection errors (i.e. the bundle adjustment error) as the measurment constraints, and define your GPS constraints as ||x- x_{gps}|| where the x are 2d or 3d GPS positions (you might want to ignore the altitude with low-cost GPS).
If your SLAM is visual and feature-point based (you didn't really say what type of SLAM you were using so I assume the most widespread type), then fusion with any of the methods above can lead to "inlier loss". You make a sudden, violent correction, and augment the reprojection errors. This means that you lose inliers in SLAM's tracking. So you have to re-triangulate points, and so on. Plus, note that even though the paper I linked to above presents a model of the GPS errors, it is not a very accurate model, and assuming that the distribution of GPS errors is unimodal (necessary for the EKF) seems a bit adventurous to me.
So, I think a good option is to use barrier-term optimization. Basically, the idea is this: since you don't really know how to model GPS errors, assume that you have more confidance in SLAM locally, and minimize a function S(x) that captures the quality of your SLAM reconstruction. Note x_opt the minimizer of S. Then, fuse with GPS data as long as it does not deteriorate S(x_opt) more than a given threshold. Mathematically, you'd want to minimize
some_coef/(thresh - S(X)) + ||x-x_{gps}||
and you'd initialize the minimization with x_opt. A good choice for S is the bundle adjustment error, since by not degrading it, you prevent inlier loss. There are other choices of S in the litterature, but they are usually meant to reduce computational time and add little in terms of accuracy.
This, unlike the EKF, does not have a nice probabilistic interpretation, but produces very nice results in practice (I have used it for fusion with other things than GPS too, and it works well). You can for example see this excellent paper that explains how to implement this thoroughly, how to set the threshold, etc.
Hope this helps. Please don't hesitate to tell me if you find inaccuracies/errors in my answer.

What parameters to optimize in KNN?

I want to optimize KNN. There is a lot about SVM, RF and XGboost; but very few for KNN.
As far as I know the number of neighbors is one parameter to tune.
But what other parameters to test? Is there any good article?
Thank you
KNN is so simple method that there is pretty much nothing to tune besides K. The whole method is literally:
for a given test sample x:
- find K most similar samples from training set, according to similarity measure s
- return the majority vote of the class from the above set
Consequently the only thing used to define KNN besides K is the similarity measure s, and that's all. There is literally nothing else in this algorithm (as it has 3 lines of pseudocode). On the other hand finding "the best similarity measure" is equivalently hard problem as learning a classifier itself, thus there is no real method of doing so, and people usually end up using either simple things (Euclidean distance) or use their domain knowledge to adapt s to the problem at hand.
Lejlot, pretty much summed it all. K-NN is so simple that it's an instance based nonparametric algorithm, that's what makes it so beautiful, and works really well for certain specific examples. Most of K-NN research is not in K-NN itself but in the computation and hardware that goes into it. If you'd like some readings on K-NN and machine learning algorithms Charles Bishop - Pattern Recognition and Machine Learning. Warning: it is heavy in the mathematics, but, Machine Learning and real computer science is all math.
By optimizing if you are also focusing on the reduction of prediction time (you should) then there are other aspects which you can implement to make the algorithm more efficient (But these are not parameter tuning). The major draw back with the KNN is that with the increasing number of training examples, the prediction time also goes high thus performance go low.
To optimize, you can check on the KNN with KD-trees, KNN with inverted lists(index) and KNN with locality sensitive hashing (KNN with LSH).
These will reduce the search space during the prediction time thus optimizing the algorithm.

Deep neural network diverges after convergence

I implemented the A3C network in https://arxiv.org/abs/1602.01783 in TensorFlow.
At this point I'm 90% sure the algorithm is implemented correctly. However, the network diverges after convergence. See the attached image that I got from a toy example where the maximum episode reward is 7.
When it diverges, policy network starts giving a single action very high probability (>0.9) for most states.
What should I check for this kind of problem? Is there any reference for it?
Note that in Figure 1 of the original paper the authors say:
For asynchronous methods we average over the best 5
models from 50 experiments.
That can mean that in lot of cases the algorithm does not work that well. From my experience, A3C often diverges, even after convergence. Carefull learning-rate scheduling can help. Or do what the authors did - learn several agents with different seed and pick the one performing the best on your validation data. You could also employ early stopping when validation error becomes to increase.