How to pass I2C addresses to Adafruit CircuitPython code? (Running ADS1115) - raspberry-pi2

I'm trying to run two Adafruit ADS1115s off of one Raspberry Pi, using two I2C addresses (0x48, 0x49). The address for each device can be set by tying the ADDR pin high (0x49) or leaving it floating (default, 0x48). I've confirmed that each board works when the address is set to 0x48, and running "i2cdetect 1" confirms that both boards are connected at the correct addresses.
I can successfully run this sample code
My question is this: How do I get the code to read from I2C address 0x49 instead of 0x48? I can't find documentation anywhere. Please advise.

Since there is a Python library the rules of Python language are applied, in particular OOP with class inheritance. That said, The class ADS1115 is inherited from ADS1x15, which in its turn has __init__() method (in OOP constructor) defined as follows:
def __init__(self, address=ADS1x15_DEFAULT_ADDRESS, i2c=None, **kwargs):
which means that it knows about at least two positional arguments with names address and i2c with default values ADS1x15_DEFAULT_ADDRESS and None respectively. So, you need in your code redefine them, i.e. instead of ads = ADS.ADS1115(i2c) use
ads = ADS.ADS1115(address=0x48, i2c=i2c)
For the second put there 0x49.

Aha!
ads1 = ADS.ADS1115(i2c, address=0x49)
Source: https://github.com/adafruit/Adafruit_CircuitPython_ADS1x15/issues/20

Related

Accessing a combination of ports by adding both their offsets to a base address. How would this work?

Context: I am following an embedded systems course https://www.edx.org/course/embedded-systems-shape-the-world-microcontroller-i
In the lecture on bit specific addressing they present the following example on a "peanut butter and jelly port".
Given you a port PB which has a base address of 0x40005000 and you wanted to access both port 4 and port 6 from PB which would be PB6 and PB4 respectively. One could add the offset of port 4(0x40) and port 6(0x100) to the base address(0x40005000) and define that as their new address 0x40005140.
Here is where I am confused. If I wanted to define the address for PB6 it would be base(0x40005000) + offset(0x100) = 0x40005100 and the address for PB4 would be base(0x40005000) + offset(0x40) = 0x40005040. So how is it that to access both of them I could use base(0x40005000) + offset(0x40) + offset(0x100) = 0x40005140? Is this is not an entirely different location in memory for them individually?
Also why is bit 0 represented as 0x004. In binary that would be 0000 0100. I suppose it would represent bit 0 if you disregard the first two binary bits but why are we disregarding them?
Lecture notes on bit specific addressing:
Your interpretation of how memory-mapped registers are addressed is quite reasonable for any normal peripheral on an ARM based microcontroller.
However, if you read the GPIODATA register definition on page 662 of the TM4C123GH6PM datasheet then you will see that this "register" behaves very differently.
They map a huge block of the address space (1024 bytes) to a single 32-bit register. This means that bits[9:2] of the the address bus are not needed, and are in fact overloaded with data. They contain the mask of the bits to be updated. This is what the "offset" calculation you have copied is trying to describe.
Personally I think this hardware interface could be a very clever way to let you set only some of the outputs within a bank using a single atomic write, but it makes this a very bad choice of device to use for teaching, because this isn't the way things normally work.

STM32CubeMX I2C code writing to reserved register bits

I'm developing an I2C driver on the STM32F74 family processors. I'm using the STM32CubeMX Low Level drivers and I can't make sense of the generated defines for I2C start and stop register values (CR2).
The code is generated in stm32f7xx_ll_i2c.h and is as follows.
/** #defgroup I2C_LL_EC_GENERATE Start And Stop Generation
* #{
*/
#define LL_I2C_GENERATE_NOSTARTSTOP 0x00000000U
/*!< Don't Generate Stop and Start condition. */
#define LL_I2C_GENERATE_STOP (uint32_t)(0x80000000U | I2C_CR2_STOP)
/*!< Generate Stop condition (Size should be set to 0). */
#define LL_I2C_GENERATE_START_READ (uint32_t)(0x80000000U | I2C_CR2_START | I2C_CR2_RD_WRN)
/*!< Generate Start for read request. */
My question is why is bit 31 included in these defines? (0x80000000U). The reference manual (RM0385) states "Bits 31:27 Reserved, must be kept at reset value.". I can't decide between modifying the generated code or keeping the 31 bit. I'll happily take recommendations simply whether its more likely that this is something needed or that I'm going to break things by writing to a reserved bit.
Thanks in advance!
I am guessing here because who knows what was on the minds of the library authors? (Not a lot if you look at the source code!). But I would guess that it is a "dirty-trick" to check that when calling LL functions you are using the specified macros.
However it is severely flawed because the "trick" is only valid for Cortex-M3/4 STM32 variants (e.g. F1xx, F2xx, F4xx) where the I2C peripheral is very different and registers such as I2C_CR2 are only 15 bits wide.
The trick is that the library functions have parameter checking asserts such as:
assert_param(IS_TRANSFER_REQUEST(Request));
Where the IS_TRANSFER_REQUEST is defined thus:
#define IS_TRANSFER_REQUEST(REQUEST) (((REQUEST) == I2C_GENERATE_STOP) || \
((REQUEST) == I2C_GENERATE_START_READ) || \
((REQUEST) == I2C_GENERATE_START_WRITE) || \
((REQUEST) == I2C_NO_STARTSTOP))
This forces you to use the LL defined macros as parameters and not some self-defined or calculated mask because they all have that "unused" check bit in them.
If that truly is the the reason, it is an ill-advised practice that did not envisage the newer I2C peripheral. You might think that the bit was stripped from the parameter before being written to the register. I have checked, it is not. And if did you would be paying for that overhead on every call, which is also undesirable.
As an error detection technique if that is what it is, it is not even applied consistently; for example all the GPIO_PIN_xx macros are 16 bits wide and since they are masks not pin numbers, using bit 31 could for example guard against passing a literal pin-number 10 where the mask 1<<10 is in fact required. Passing 10 would refer to pins 3 and 1 not 10. And to be honest that mistake is far more likely than, passing an incorrect I2C transfer request type.
In the end however "Reserved" generally means "unused but may be used in future implementations", and requiring you to use the "reset value" is a way of ensuring forward binary compatibility. If you had such a device no doubt there would be a corresponding library update to support it - but it would require re-compilation of the code. The risk is low and probably only a problem if you attempt to run this binary on a newer incompatible part that used this bits.
I agree with Clifford, the ST CubeMC / HAL / LL library code is, in places, some of the worst written code imaginable. I have a particular issue with lines such as "TIMx->CCER &= ~TIM_CCER_CC1E" where TIM_CCER_CC1e is defined as 0x0001 and the CCER register contains reserved bits that should remain at 0. There are hundreds of such examples all throughout the library code. ST remain silent to my request for advice.

I2C Master-slave address

I am working on a project where I'm trying to implement I2C master-slave communication so as to read some data from a magnetic sensor. That's all OK and I have written the code. However, I am not quite sure about the slave address needed for the communication to actually happen. The board I'm using can hold STM32 ARM® Cortex™-M3 and Cortex™-M4 MCU's. I don't know if it matters, but the MCU I'm using is STM32F107VCT6.
The part of the code where I need to enter the address is in the following function marked as "SLAVE_ADDRESS_GOES_HERE":
uint8_t Magnet_readReg(const uint8_t regAdd)
{
uint8_t pom[1] = {0};
pom[0] = regAdd;
I2C1_Start();
I2C1_Write(SLAVE_ADDRESS_GOES_HERE, pom, 1, END_MODE_RESTART);
I2C1_Read(SLAVE_ADDRESS_GOES_HERE, pom, 1, END_MODE_STOP);
return pom[0];
}
The results should be some numbers which tell me how strong the magnetic field is. It has three different values as an output because it calculates a value for each of the three axes (yes, it's the correct plural of the word axis), so it can could be used as a compass for example.
Now the trick is that I don't get any results because I don't know the actual address of the sensor. Therefore, I will share the datasheet of the sensor I'm using. I am not sure if i'm reading it correctly.
Here is the datasheet:
https://www.memsic.com/userfiles/files/Datasheets/Magnetic-Sensors-Datasheets/MMC3416xPJ_Rev_C_2013_10_30.pdf
Solved.
As it turns out, there was something wrong with the board itself. Therefore, a connection couldn't be established. And the address is 60H for writing and 61H for reading. 30H is the address, but when you add a zero or a one in the LSB position you get 60H or 61H.
The I2C address of your sensor is described on page 4 of the datasheet you provided. You must read the marking on your device package, then use the table from "Number" to "Part number" in the datasheet to determine your exact part. Finally, use the table under the "Ordering Guide" to find the factory-programmed I2C slave address of your device.
Given that you later specified that your 7-bit I2C slave address is 0x30, then you must have part number MMC34160PJ, which should be marked:
0 &bullet;
XX

How to write ISR macro for 2 pins on the same port in PIC32MZ2048ECH144 using Microchip Harmony Configurator(MHC)?

I am using PIC32MZ2048ECH144. I have two switches connected to RH8(pin Number 81) and RH9(pin Number 82). I do not see any option in MHC to set interrupt at pin level, therefore I get the ISR generated for the port-H. I need the ISRs for each pin to be invoked separately.
Hence, in "system_init.c", in "SYS_Initialize" function I added the following lines,
PLIB_PORTS_PinChangeNoticePerPortEnable(PORTS_ID_0, PORT_CHANNEL_H, PORTS_BIT_POS_8);
PLIB_PORTS_PinChangeNoticePerPortEnable(PORTS_ID_0, PORT_CHANNEL_H, PORTS_BIT_POS_9);
The ISR generated by MHC in "system_interrupt.c":
void __ISR(_CHANGE_NOTICE_H_VECTOR, ipl3AUTO) _IntHandlerChangeNotification_PortH1(void)
{
PLIB_INT_SourceFlagClear(INT_ID_0,INT_SOURCE_CHANGE_NOTICE_H);
APP_SwitchChangeNoticed();
}
I replaced the above ISR macro with the below lines:
void __ISR(_ADC1_DATA22_VECTOR, ipl3AUTO) _IntHandlerChangeNotification_PortH1(void)
{
PLIB_INT_SourceFlagClear(INT_ID_0, INT_SOURCE_CHANGE_NOTICE);
APP_SwitchChangeNoticed();
}
void __ISR(_ADC1_DATA23_VECTOR, ipl3AUTO) _IntHandlerChangeNotification_PortH(void)
{
PLIB_INT_SourceFlagClear(INT_ID_0,INT_SOURCE_CHANGE_NOTICE_H);
test1();
}
This did not work out. I referred the link http://microchip.wikidot.com/faq:78. I feel I am wrong in choosing the vector numbers for the ISR macros from "/pic32mx/include/proc/p32mz2048ech144.h". (I used _ADC1_DATA22_VECTOR and _ADC1_DATA23_VECTOR thinking that the values against them 81 and 82 are pin numbers, which again did not work.) Any help or hints on how to set pin level interrupts(2 pins on the same port) would be really great! Kindly apologize for any mistakes in my post.
Thanks in advance.
The short answer is that what you are asking for cant be achieved directly with two separate ISRs. There is only one change notification ISR vector available for the whole H port. You would normally achieve what you are looking for with an added software check to determine which of your two pins is in a different state. Another method is to simple move your signal to another port (if your board is not finalized).
The name you give the function has no bearing on what the ISR will react to. The real magic comes in the __ISR macro arguments.
For example:
void __ISR(_CHANGE_NOTICE_H_VECTOR, ipl3AUTO) _IntHandler1234()
Notice the _CHANGE_NOTICE_H_VECTOR; it signifies that this interrupt service routine will be called when the change notification interrupt happens on port H.

Read XDATA value to app in CC2541

I want to read the MAC address for the Bluetooth LE chip CC2541. This is stored in memory location 0x780C. I went through the
osal_snv_read
function but I don't know what osalSnvId_t id is. A brief explanation about how this workds would be really helpful.
Apparently the location where MAC address is stored cannot be read using osal_snv_read. So either I have to use
GAPRole_GetParameter(GAPROLE_BD_ADDR, ownAddress);
after
GAPROLE_STARTED
or I have to use
__xdata __no_init uint8 mac_id[6] # 0x780C;
__xdata to say it is reading from XDATA memory and __no_init to tell the compiler not to initialize this variable. Also, this had to be kept outside any function to prevent it from declaring as auto variable.
Credits: http://e2e.ti.com/support/low_power_rf/f/538/t/273968.aspx