I'm trying to implement Algorithm D from Knuth's "The Art of Computer Programming, Vol 2" in Rust although I'm having trouble understating how to implement the very last step of unnormalizing. My natural numbers are a class where each number is a vector of u64, in base u64::MAX. Addition, subtraction, and multiplication have been implemented.
Knuth's Algorithm D is a euclidean division algorithm which takes two natural numbers x and y and returns (q,r) where q = x / y (integer division) and r = x % y, the remainder. The algorithm depends on an approximation method which only works if the first digit of y is greater than b/2, where b is the base you're representing the numbers in. Since not all numbers are of this form, it uses a "normalizing trick", for example (if we were in base 10) instead of doing 200 / 23, we calculate a normalizer d and do (200 * d) / (23 * d) so that 23 * d has a first digit greater than b/2.
So when we use the approximation method, we end up with the desired q but the remainder is multiplied by a factor of d. So the last step is to divide r by d so that we can get the q and r we want. My problem is, I'm a bit confused at how we're suppose to do this last step as it requires division and the method it's part of is trying to implement division.
(Maybe helpful?):
The way that d is calculated is just by taking the integer floor of b-1 divided by the first digit of y. However, Knuth suggests that it's possible to make d a power of 2, as long as d * the first digit of y is greater than b / 2. I think he makes this suggestion so that instead of dividing, we can just do a binary shift for this last step. Although I don't think I can do that given that my numbers are represented as vectors of u64 values, instead of binary.
Any suggestions?
This is the opposite of what most "random order" questions are about.
I want to select data from a database in random order. But I want to be able to repeat certain selects, getting the same order again.
Current (random) select:
SELECT custId, rand() as random from
(
SELECT DISTINCT custId FROM dummy
)
Using this, every key/row gets a random number. Ordering those ascending results in a random order.
But I want to repeat this select, getting the very same order again. My idea is to calculate a random number (r) once per session (e.g. "4") and use this number to shuffle the data in some way.
My first idea:
SELECT custId, custId * 4 as random from
(
SELECT DISTINCT custId FROM dummy
)
(in real life "4" would be something like 4005226664240702)
This results in a different number for each line but the same ones every run. By changing "r" to 5 all numbers will change.
The problem is: multiplication is not sufficient here. It just increases the numbers but keeps the order the same. Therefore I need some other kind of arithmetic function.
More abstract
Starting with my data (A-D). k is the key and r is the random number currently used:
k r
A = 1 4
B = 2 4
C = 3 4
D = 4 4
Doing some calculation using k and r in every line I want to get something like:
k r
A = 1 4 --> 12
B = 2 4 --> 13
C = 3 4 --> 11
D = 4 4 --> 10
The numbers can be whatever they want, but when I order them ascending I want to get a different order than the initial one. In this case D, C, A, B, E.
Setting r to 7 should result in a different order (C, A, B, D):
k r
A = 1 7 --> 56
B = 2 7 --> 78
C = 3 7 --> 23
D = 4 7 --> 80
Every time I use r = 7 should result in the same numbers => same order.
I'm looking for a mathematical function to do the calculation with k and r. Seeding the RAND() function is not suitable because it's not supported by some databases we support
Please note that r is already a randomly generated number
Background
One Table - Two data consumers. One consumer will get random 5% of the table, the other one the other 95%. They don't just get the data but a generated SQL. So there are two SQL's which must not select the same data twice but still random.
You could try and implement the Multiply-With-Carry PseudoRandomNumberGenerator. The C version goes like this (source: Wikipedia):
m_w = <choose-initializer>; /* must not be zero, nor 0x464fffff */
m_z = <choose-initializer>; /* must not be zero, nor 0x9068ffff */
uint get_random()
{
m_z = 36969 * (m_z & 65535) + (m_z >> 16);
m_w = 18000 * (m_w & 65535) + (m_w >> 16);
return (m_z << 16) + m_w; /* 32-bit result */
}
In SQL, you could create a table Random, with two columns to contain w and z, and one ID column to identify each session. Perhaps your vendor supports variables and you need not bother with the table.
Nonetheless, even if we use a table, we immediately run into trouble cause ANSI SQL doesn't support unsigned INTs. In SQL Server I could switch to BIGINT, unsure if your vendor supports that.
CREATE TABLE Random (ID INT, [w] BIGINT, [z] BIGINT)
Initialize a new session, say number 3, by inserting 1 into z and the seed into w:
INSERT INTO Random (ID, w, z) VALUES (3, 8921, 1);
Then each time you wish to generate a new random number, do the computations:
UPDATE Random
SET
z = (36969 * (z % 65536) + z / 65536) % 4294967296,
w = (18000 * (w % 65536) + w / 65536) % 4294967296
WHERE ID = 3
(Note how I have replaced bitwise operands with div and mod operations and how, after computing, you need to mod 4294967296 to stay within the proper 32 bits unsigned int range.)
And select the new value:
SELECT(z * 65536 + w) % 4294967296
FROM Random
WHERE ID = 3
SQLFiddle demo
Not sure if this applies in non-SQL Server, but typically when you use a RAND() function, you can specify a seed. Everytime you specify the same seed, the randomization will be the same.
So, it sounds like you just need to store the seed number and use that each time to get the same set of random numbers.
MSDN Article on RAND
Each vendor has solved this in its own way. Creating your own implementation will be hard, since random number generation is difficult.
Oracle
dbms_random can be initialized with a seed: http://docs.oracle.com/cd/B19306_01/appdev.102/b14258/d_random.htm#i998255
SQL Server
First call to RAND() can provide a seed: http://technet.microsoft.com/en-us/library/ms177610.aspx
MySql
First call to RAND() can provide a seed: http://dev.mysql.com/doc/refman/4.1/en/mathematical-functions.html#function_rand
Postgresql
Use SET SEED or SELECT setseed() : http://www.postgresql.org/docs/8.3/static/sql-set.html
I've coded a basic Mandelbrot explorer in C#, but I have those horrible bands of color, and it's all greyscale.
I have the equation for smooth coloring:
mu = N + 1 - log (log |Z(N)|) / log 2
Where N is the escape count, and |Z(N)| is the modulus of the complex number after the value has escaped, it's this value which I'm unsure of.
My code is based off the pseudo code given on the wikipedia page: http://en.wikipedia.org/wiki/Mandelbrot_set#For_programmers
The complex number is represented by the real values x and y, using this method, how would I calculate the value of |Z(N)| ?
|Z(N)| means the distance to the origin, so you can calculate it via sqrt(x*x + y*y).
If you run into an error with the logarithm: Check the iterations before. If it's part of the Mandelbrot set (iteration = max_iteration), the first logarithm will result 0 and the second will raise an error.
So just add this snippet instead of your old return code. .
if (i < iterations)
{
return i + 1 - Math.Log(Math.Log(Math.Sqrt(x * x + y * y))) / Math.Log(2);
}
return i;
Later, you should divide i by the max_iterations and multiply it with 255. This will give you a nice rgb-value.
I'm sorry the title is so confusingly worded, but it's hard to condense this problem down to a few words.
I'm trying to find the minimum value of a specific equation. At first I'm looping through the equation, which for our purposes here can be something like y = .245x^3-.67x^2+5x+12. I want to design a loop where the "steps" through the loop get smaller and smaller.
For example, the first time it loops through, it uses a step of 1. I will get about 30 values. What I need help on is how do I Use the three smallest values I receive from this first loop?
Here's an example of the values I might get from the first loop: (I should note this isn't supposed to be actual code at all. It's just a brief description of what's happening)
loop from x = 1 to 8 with step 1
results:
x = 1 -> y = 30
x = 2 -> y = 28
x = 3 -> y = 25
x = 4 -> y = 21
x = 5 -> y = 18
x = 6 -> y = 22
x = 7 -> y = 27
x = 8 -> y = 33
I want something that can detect the lowest three values and create a loop. From theses results, the values of x that get the smallest three results for y are x = 4, 5, and 6.
So my "guess" at this point would be x = 5. To get a better "guess" I'd like a loop that now does:
loop from x = 4 to x = 6 with step .5
I could keep this pattern going until I get an absurdly accurate guess for the minimum value of x.
Does anybody know of a way I can do this? I know the values I'm going to get are going to be able to be modeled by a parabola opening up, so this format will definitely work. I was thinking that the values could be put into a column. It wouldn't be hard to make something that returns the smallest value for y in that column, and the corresponding x-value.
If I'm being too vague, just let me know, and I can answer any questions you might have.
nice question. Here's at least a start for what I think you should do for this:
Sub findMin()
Dim lowest As Integer
Dim middle As Integer
Dim highest As Integer
lowest = 999
middle = 999
hightest = 999
Dim i As Integer
i = 1
Do While i < 9
If (retVal(i) < retVal(lowest)) Then
highest = middle
middle = lowest
lowest = i
Else
If (retVal(i) < retVal(middle)) Then
highest = middle
middle = i
Else
If (retVal(i) < retVal(highest)) Then
highest = i
End If
End If
End If
i = i + 1
Loop
End Sub
Function retVal(num As Integer) As Double
retVal = 0.245 * Math.Sqr(num) * num - 0.67 * Math.Sqr(num) + 5 * num + 12
End Function
What I've done here is set three Integers as your three Min values: lowest, middle, and highest. You loop through the values you're plugging into the formula (here, the retVal function) and comparing the return value of retVal (hence the name) to the values of retVal(lowest), retVal(middle), and retVal(highest), replacing them as necessary. I'm just beginning with VBA so what I've done likely isn't very elegant, but it does at least identify the Integers that result in the lowest values of the function. You may have to play around with the values of lowest, middle, and highest a bit to make it work. I know this isn't EXACTLY what you're looking for, but it's something along the lines of what I think you should do.
There is no trivial way to approach this unless the problem domain is narrowed.
The example polynomial given in fact has no minimum, which is readily determined by observing y'>0 (hence, y is always increasing WRT x).
Given the wide interpretation of
[an] equation, which for our purposes here can be something like y =
.245x^3-.67x^2+5x+12
many conditions need to be checked, even assuming the domain is limited to polynomials.
The polynomial order is significant, and the order determines what conditions are necessary to check for how many solutions are possible, or whether any solution is possible at all.
Without taking this complexity into account, an iterative approach could yield an incorrect solution due to underflow error, or an unfortunate choice of iteration steps or bounds.
I'm not trying to be hard here, I think your idea is neat. In practice it is more complicated than you think.
I know the modulus (%) operator calculates the remainder of a division. How can I identify a situation where I would need to use the modulus operator?
I know I can use the modulus operator to see whether a number is even or odd and prime or composite, but that's about it. I don't often think in terms of remainders. I'm sure the modulus operator is useful, and I would like to learn to take advantage of it.
I just have problems identifying where the modulus operator is applicable. In various programming situations, it is difficult for me to see a problem and realize "Hey! The remainder of division would work here!".
Imagine that you have an elapsed time in seconds and you want to convert this to hours, minutes, and seconds:
h = s / 3600;
m = (s / 60) % 60;
s = s % 60;
0 % 3 = 0;
1 % 3 = 1;
2 % 3 = 2;
3 % 3 = 0;
Did you see what it did? At the last step it went back to zero. This could be used in situations like:
To check if N is divisible by M (for example, odd or even)
or
N is a multiple of M.
To put a cap of a particular value. In this case 3.
To get the last M digits of a number -> N % (10^M).
I use it for progress bars and the like that mark progress through a big loop. The progress is only reported every nth time through the loop, or when count%n == 0.
I've used it when restricting a number to a certain multiple:
temp = x - (x % 10); //Restrict x to being a multiple of 10
Wrapping values (like a clock).
Provide finite fields to symmetric key algorithms.
Bitwise operations.
And so on.
One use case I saw recently was when you need to reverse a number. So that 123456 becomes 654321 for example.
int number = 123456;
int reversed = 0;
while ( number > 0 ) {
# The modulus here retrieves the last digit in the specified number
# In the first iteration of this loop it's going to be 6, then 5, ...
# We are multiplying reversed by 10 first, to move the number one decimal place to the left.
# For example, if we are at the second iteration of this loop,
# reversed gonna be 6, so 6 * 10 + 12345 % 10 => 60 + 5
reversed = reversed * 10 + number % 10;
number = number / 10;
}
Example. You have message of X bytes, but in your protocol maximum size is Y and Y < X. Try to write small app that splits message into packets and you will run into mod :)
There are many instances where it is useful.
If you need to restrict a number to be within a certain range you can use mod. For example, to generate a random number between 0 and 99 you might say:
num = MyRandFunction() % 100;
Any time you have division and want to express the remainder other than in decimal, the mod operator is appropriate. Things that come to mind are generally when you want to do something human-readable with the remainder. Listing how many items you could put into buckets and saying "5 left over" is good.
Also, if you're ever in a situation where you may be accruing rounding errors, modulo division is good. If you're dividing by 3 quite often, for example, you don't want to be passing .33333 around as the remainder. Passing the remainder and divisor (i.e. the fraction) is appropriate.
As #jweyrich says, wrapping values. I've found mod very handy when I have a finite list and I want to iterate over it in a loop - like a fixed list of colors for some UI elements, like chart series, where I want all the series to be different, to the extent possible, but when I've run out of colors, just to start over at the beginning. This can also be used with, say, patterns, so that the second time red comes around, it's dashed; the third time, dotted, etc. - but mod is just used to get red, green, blue, red, green, blue, forever.
Calculation of prime numbers
The modulo can be useful to convert and split total minutes to "hours and minutes":
hours = minutes / 60
minutes_left = minutes % 60
In the hours bit we need to strip the decimal portion and that will depend on the language you are using.
We can then rearrange the output accordingly.
Converting linear data structure to matrix structure:
where a is index of linear data, and b is number of items per row:
row = a/b
column = a mod b
Note above is simplified logic: a must be offset -1 before dividing & the result must be normalized +1.
Example: (3 rows of 4)
1 2 3 4
5 6 7 8
9 10 11 12
(7 - 1)/4 + 1 = 2
7 is in row 2
(7 - 1) mod 4 + 1 = 3
7 is in column 3
Another common use of modulus: hashing a number by place. Suppose you wanted to store year & month in a six digit number 195810. month = 195810 mod 100 all digits 3rd from right are divisible by 100 so the remainder is the 2 rightmost digits in this case the month is 10. To extract the year 195810 / 100 yields 1958.
Modulus is also very useful if for some crazy reason you need to do integer division and get a decimal out, and you can't convert the integer into a number that supports decimal division, or if you need to return a fraction instead of a decimal.
I'll be using % as the modulus operator
For example
2/4 = 0
where doing this
2/4 = 0 and 2 % 4 = 2
So you can be really crazy and let's say that you want to allow the user to input a numerator and a divisor, and then show them the result as a whole number, and then a fractional number.
whole Number = numerator/divisor
fractionNumerator = numerator % divisor
fractionDenominator = divisor
Another case where modulus division is useful is if you are increasing or decreasing a number and you want to contain the number to a certain range of number, but when you get to the top or bottom you don't want to just stop. You want to loop up to the bottom or top of the list respectively.
Imagine a function where you are looping through an array.
Function increase Or Decrease(variable As Integer) As Void
n = (n + variable) % (listString.maxIndex + 1)
Print listString[n]
End Function
The reason that it is n = (n + variable) % (listString.maxIndex + 1) is to allow for the max index to be accounted.
Those are just a few of the things that I have had to use modulus for in my programming of not just desktop applications, but in robotics and simulation environments.
Computing the greatest common divisor
Determining if a number is a palindrome
Determining if a number consists of only ...
Determining how many ... a number consists of...
My favorite use is for iteration.
Say you have a counter you are incrementing and want to then grab from a known list a corresponding items, but you only have n items to choose from and you want to repeat a cycle.
var indexFromB = (counter-1)%n+1;
Results (counter=indexFromB) given n=3:
`1=1`
`2=2`
`3=3`
`4=1`
`5=2`
`6=3`
...
Best use of modulus operator I have seen so for is to check if the Array we have is a rotated version of original array.
A = [1,2,3,4,5,6]
B = [5,6,1,2,3,4]
Now how to check if B is rotated version of A ?
Step 1: If A's length is not same as B's length then for sure its not a rotated version.
Step 2: Check the index of first element of A in B. Here first element of A is 1. And its index in B is 2(assuming your programming language has zero based index).
lets store that index in variable "Key"
Step 3: Now how to check that if B is rotated version of A how ??
This is where modulus function rocks :
for (int i = 0; i< A.length; i++)
{
// here modulus function would check the proper order. Key here is 2 which we recieved from Step 2
int j = [Key+i]%A.length;
if (A[i] != B[j])
{
return false;
}
}
return true;
It's an easy way to tell if a number is even or odd. Just do # mod 2, if it is 0 it is even, 1 it is odd.
Often, in a loop, you want to do something every k'th iteration, where k is 0 < k < n, assuming 0 is the start index and n is the length of the loop.
So, you'd do something like:
int k = 5;
int n = 50;
for(int i = 0;i < n;++i)
{
if(i % k == 0) // true at 0, 5, 10, 15..
{
// do something
}
}
Or, you want to keep something whitin a certain bound. Remember, when you take an arbitrary number mod something, it must produce a value between 0 and that number - 1.